Review - Exam 1
Ch 1 - 5

Variables
1) Numeric
 a) discrete
 b) continuous

2) Categorical
 a) ranked
 b) unranked
Tables / Graphical Displays

1) Dot Plot
2) Stem and Leaf Plot
3) Box Plots
4) Bar Graph
5) Pie Chart
6) Frequency Distribution
7) Histogram

Misusing Statistics
Calculations

\[\sum x \]
\[\sum x^2 \]
\[(\sum x)^2 \]
\[\sum (x - \bar{x}) \]
\[\sum (x - \bar{x})^2 \]
\[\frac{n!}{m! (n-m)!} \]
\[b^n \]
Averages - Centers of Data

Mean: \(\bar{X} = \frac{\sum X}{n} \)

Median: \(\bar{X} = \frac{1}{2} (n+1) \)th ranked observation

Mode: most frequent observed value
Sample Standard Deviation

\[S = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \]

or

\[S = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}} \cdot \frac{1}{n-1} \]

Interpretation
Interpretation

Value of s indicates how "spread out" the data is.

1) $s = 0 \rightarrow$ No variation in the data; values all the same.

2) s "small" \rightarrow the data values are not widely dispersed.

3) s "large" \rightarrow the data values are widely dispersed.
$$\text{IQR} = Q_3 - Q_1$$

$$\text{Skewness} = \frac{3(\bar{X} - \overline{X})}{S}$$

Symmetric Dist.
Pos. Skewed "
Neg. Skewed "

5-Number Summary
Boxplots
Chapter 3 - Correlation

Pearson Correlation Coefficient.

\[r = \frac{SS(xy)}{\sqrt{SS(x) \cdot SS(y)}} \]

where

\[SS(xy) = \sum xy - \frac{(\sum x)(\sum y)}{n} \]

\[SS(x) = \sum x^2 - \frac{(\sum x)^2}{n} \]

\[SS(y) = \sum y^2 - \frac{(\sum y)^2}{n} \]
Interpretation
1) Positive Corr.
2) Negative Corr.
3) Zero Corr.
4) $-1 \leq r \leq 1$
5) Cause and Effect
Regression Analysis

Regression (Prediction) Equation

\[y = b_0 + b_1 x \]

\[b_1 = \frac{SS(xy)}{SS(x)} \]

\[b_0 = \bar{y} - b_1 \bar{x} \]

Predicting Values of \(y \)

Point Estimator: \(\hat{y} = b_0 + b_1 x \)
Probability - Relative Frequency

Definition

Def: Suppose an experiment consists of n trials, and k of these trials result in event E. Then

$$\hat{P}(E) = \frac{k}{n} = \frac{\# \text{ successful repetitions}}{\text{total \# repetitions}}$$

Note: This is called the empirical probability of an event or the relative frequency of the event.
Probability - Equally Likely Outcomes

Def: Suppose an experiment can result in one of \(m \) equally likely outcomes. Suppose that \(r \) of these outcomes result in event \(A \) occurring. Then the theoretical probability of event \(A \) is

\[
P(A) = \frac{r}{m}
\]

\(= \frac{\text{# outcomes in event } A}{\text{total # possible outcomes}}\)

Note: For each outcome in S.S.

\[
P(\text{outcome}) = \frac{1}{\text{total # possible outcomes}}
\]
A discrete probability distribution is a list (or description) of the values the random variable can have, along with the associated probabilities.

We can do this using a probability tree.
Rules

The probability of an event E is always between 0 and 1, inclusive:

$$0 \leq P(E) \leq 1$$

$P(E) = 0 \quad \rightarrow \quad$ event E cannot occur

$P(E) = 1 \quad \rightarrow \quad$ event E must always occur
2) The probability of event A is equal to the sum of the probabilities of the outcomes in event A

$$P(A) = \sum_{\text{all outcomes in } A} P(\text{outcome})$$

Complementary Event

Def: Suppose A is an event. The complement of event A, denoted "not A", is the event "A does not occur".

Rule of Complementary Events

$$P(\text{not } A) = 1 - P(A)$$