
Chapter 1 Supplemental Text Material 
 

S-1.1  More About Planning Experiments 
Coleman and Montgomery (1993) present a discussion of methodology and some guide 
sheets useful in the pre-experimental planning phases of designing and conducting an 
industrial experiment.  The guide sheets are particularly appropriate for complex, high-
payoff or high-consequence experiments involving (possibly) many factors or other 
issues that need careful consideration and (possibly) many responses.  They are most 
likely to be useful in the earliest stages of experimentation with a process or system.  
Coleman and Montgomery suggest that the guide sheets work most effectively when they 
are filled out by a team of experimenters, including engineers and scientists with 
specialized process knowledge, operators and technicians, managers and (if available) 
individuals with specialized training and experience in designing experiments.  The 
sheets are intended to encourage discussion and resolution of technical and logistical 
issues before the experiment is actually conducted. 

Coleman and Montgomery give an example involving manufacturing impellers on a 
CNC-machine that are used in a jet turbine engine.  To achieve the desired performance 
objectives, it is necessary to produce parts with blade profiles that closely match the 
engineering specifications.  The objective of the experiment was to study the effect of 
different tool vendors and machine set-up parameters on the dimensional variability of 
the parts produced by the CNC-machines. 

The master guide sheet is shown in Table 1 below.  It contains information useful in 
filling out the individual sheets for a particular experiment. Writing the objective of the 
experiment is usually harder than it appears.  Objectives should be unbiased, specific, 
measurable and of practical consequence.  To be unbiased, the experimenters must 
encourage participation by knowledgeable and interested people with diverse 
perspectives.  It is all too easy to design a very narrow experiment to “prove” a pet 
theory.  To be specific and measurable the objectives should be detailed enough and 
stated so that it is clear when they have been met.  To be of practical consequence, there 
should be something that will be done differently as a result of the experiment, such as a 
new set of operating conditions for the process, a new material source, or perhaps a new 
experiment will be conducted.  All interested parties should agree that the proper 
objectives have been set. 

The relevant background should contain information from previous experiments, if any, 
observational data that may have been collected routinely by process operating personnel, 
field quality or reliability data, knowledge based on physical laws or theories, and expert 
opinion.  This information helps quantify what new knowledge could be gained by the 
present experiment and motivates discussion by all team members.  Table 2 shows the 
beginning of the guide sheet for the CNC-machining experiment. 

Response variables come to mind easily for most experimenters.  When there is a choice, 
one should select continuous responses, because generally binary and ordinal data carry 
much less information and continuous responses measured on a well-defined numerical 
scale are typically easier to analyze. On the other hand, there are many situations where a 
count of defectives, a proportion, or even a subjective ranking must be used as a 
response.



 

Table 1.  Master Guide Sheet.  This guide can be used to help plan and design 
an experiment. It serves as a checklist to improve experimentation and ensures 
that results are not corrupted for lack of careful planning.  Note that it may not be 
possible to answer all questions completely.  If convenient, use supplementary 
sheets for topics 4-8 

1.Experimenter's Name and Organization: 
   Brief Title of Experiment: 
2. Objectives of the experiment (should be unbiased, specific, measurable, and 
of practical consequence): 
3. Relevant background on response and control variables: (a) theoretical 
relationships; (b) expert knowledge/experience; (c) previous experiments.  Where does 
this experiment fit into the study of the process or system?: 
4. List: (a) each response variable, (b) the normal response variable level at which the 
process runs, the distribution or range of normal operation, (c) the precision or range to 
which it can be measured (and how): 
5. List: (a) each control variable, (b) the normal control variable level at which the 
process is run, and the distribution or range of normal operation, (c) the precision (s) or 
range to which it can be set (for the experiment, not ordinary plant operations) and the 
precision to which it can be measured, (d) the proposed control variable settings, and 
(e) the predicted effect (at least qualitative) that the settings will have on each response 
variable: 
6. List: (a) each factor to be "held constant" in the experiment, (b) its desired level 
and allowable s or range of variation, (c) the precision or range to which it can 
measured (and how), (d) how it can be controlled, and (e) its expected impact, if any, 
on each of the responses: 
7. List: (a) each nuisance factor (perhaps time-varying), (b) measurement precision, 
(c)strategy (e.g., blocking, randomization, or selection), and (d) anticipated effect: 
8. List and label known or suspected interactions: 
9. List restrictions on the experiment, e.g., ease of changing control variables, 
methods of data acquisition, materials, duration, number of runs, type of experimental 
unit (need for a split-plot design), “illegal” or irrelevant experimental regions, limits to 
randomization, run order, cost of changing a control variable setting, etc.: 
 
10. Give current design preferences, if any, and reasons for preference, including 
blocking and randomization: 
11. If possible, propose analysis and presentation techniques, e.g., plots, 
ANOVA, regression, plots, t tests, etc.: 
12.  Who will be responsible for the coordination of the experiment? 
13.  Should trial runs be conducted?  Why / why not? 
 
 
 
 
 



Table 2. Beginning of Guide Sheet for CNC-Machining Study. 
 

l.Experimenter's Name and Organization: John Smith, Process Eng.  Group 
Brief Title of Experiment: CNC Machining Study 
2. Objectives of the experiment (should be unbiased, specific, measurable, and 
of practical consequence): 
For machined titanium forgings, quantify the effects of tool vendor; shifts in a-axis, x- axis, y-axis, and z-
axis; spindle speed; fixture height; feed rate; and spindle position on 
the average and variability in blade profile for class X impellers, such as shown in 
Figure 1.  
 
3. Relevant background on response and control variables: (a) theoretical relationships; (b) expert 
knowledge/experience; (c) previous experiments.  Where does this experiment fit into the study of the 
process or system? 
(a) Because of tool geometry, x-axis shifts would be expected to produce thinner blades, an undesirable 

characteristic of the airfoil. 
(b) This family of parts has been produced for over 10 years; historical experience indicates that 

externally reground tools do not perform as well as those from the “internal” vendor (our own regrind 
operation). 

(c) Smith (1987) observed in an internal process engineering study that current spindle speeds and feed 
rates work well in producing parts that are at the nominal profile required by the engineering drawings 
- but no study was done of the sensitivity to variations in set-up parameters. 

 
Results of this experiment will be used to determine machine set-up parameters for impeller machining.  A 
robust process is desirable; that is, on-target and low variability performance regardless of which tool 
vendor is used. 
 
 
 
Measurement precision is an important aspect of selecting the response variables in an 
experiment.  Insuring that the measurement process is in a state of statistical control is 
highly desirable.  That is, ideally there is a well-established system of insuring both 
accuracy and precision of the measurement methods to be used.  The amount of error in 
measurement imparted by the gauges used should be understood.  If the gauge error is 
large relative to the change in the response variable that is important to detect, then the 
experimenter will want to know this before conducting the experiment.  Sometimes 
repeat measurements can be made on each experimental unit or test specimen to reduce 
the impact of measurement error.  For example, when measuring the number average 
molecular weight of a polymer with a gel permeation chromatograph  (GPC) each sample 
can be tested several times and the average of those molecular weight reading reported as 
the observation for that sample.  When measurement precision is unacceptable, a 
measurement systems capability study may be performed to attempt to improve the 
system.  These studies are often fairly complicated designed experiments.  Chapter 13 
presents an example of a factorial experiment used to study the capability of a 
measurement system. 
 
The impeller involved in this experiment is shown in Figure 1.  Table 3 lists the 
information about the response variables.  Notice that there are three response variables 
of interest here. 
 
 



 
 
Figure 1.  Jet engine impeller (side view).  The z-axis is vertical, x-axis is horizontal, y-
axis is into the page.  1 = height of wheel, 2 = diameter of wheel, 3 = inducer blade 
height, 4 = exducer blade height, 5 = z height of blade. 
 
 
 

Table 3. Response Variables 
Response variable 

(units) 
Normal operating 
level and range 

Measurement 
precision, accuracy 

how known? 

Relationship of 
response variable to 

objective 
Blade profile 

 (inches) 
Nominal (target) 
±1 X 10-3 inches to 
±2 X  10-3  inches at 

all points 

σE≈@ 1 X 10 -5    inches 
from a coordinate 

measurement 
machine capability 

study 

Estimate mean 
absolute difference 
from target and 
standard deviation 

 
Surface finish Smooth to rough 

(requiring hand 
finish) 

Visual criterion 
(compare to 
standards) 

Should be as smooth 
as possible 

 
Surface defect 

count 
Typically 0 to 10 Visual criterion 

(compare to 
standards) 

 
 

Must not be 
excessive in 
number or  
magnitude 

 
 
 
 
As with response variables, most experimenters can easily generate a list of candidate 
design factors to be studied in the experiment.  Coleman and Montgomery call these 
control variables.   We often call them controllable variables, design factors, or process 
variables in the text.  Control variables can be continuous or categorical (discrete).  The 
ability of the experimenters to measure and set these factors is important.  Generally, 



small errors in the ability to set, hold or measure the levels of control variables are of 
relatively little consequence.  Sometimes when the measurement or setting error is large, 
a numerical control variable such as temperature will have to be treated as a categorical 
control variable (low or high temperature).  Alternatively, there are errors-in-variables 
statistical models that can be employed, although their use is beyond the scope of this 
book.  Information about the control variables for the CNC-machining example is shown 
in Table 4. 
 
 
  Table 4. Control Variables 
  Measurement                                                                         
  Precision and Proposed settings, Predicted effects 
Control variable Normal level setting error- based on (for various 
 (units) and range how known? predicted effects responses) 
 
x-axis shift* 0-.020 inches .001inches 0, .015 inches Difference 
 (inches)  (experience) 
y-axis shift* 0-.020 inches .001inches    0, .015 inches Difference 
 (inches)  (experience) 
z-axis shift* 0-.020 inches .001inches    ? Difference 
 (inches)  (experience) 
Tool vendor Internal, external -    Internal, external External is more 
    variable 
a-axis shift* 0-.030 degrees .001 degrees    0, .030 degrees Unknown 
 (degrees)  (guess) 
Spindle speed 85-115% ∼1%    90%,110% None? 
 (% of  (indicator 
 nominal)  on control 
   panel) 
 
Fixture height 0-.025 inches .002inches 0, .015 inches Unknown 
  (guess) 
Feed rate (% of 90-110% ∼1% 90%,110% None? 
 nominal)  (indicator 
   on control 
   panel)                                                                                               
 
'The x, y, and z axes are used to refer to the part and the CNC machine.  The a axis refers only to the machine. 
 
 
Held-constant factors are control variables whose effects are not of interest in this 
experiment.  The worksheets can force meaningful discussion about which factors are 
adequately controlled, and if any potentially important factors (for purposes of the 
present experiment) have inadvertently been held constant when they should have been 
included as control variables.  Sometimes subject-matter experts will elect to hold too 
many factors constant and as a result fail to identify useful new information.  Often this 
information is in the form of interactions among process variables. 
 
In the CNC experiment, this worksheet helped the experimenters recognize that the 
machine had to be fully warmed up before cutting any blade forgings.  The actual 
procedure used was to mount the forged blanks on the machine and run a 30-minute cycle 



without the cutting tool engaged.  This allowed all machine parts and the lubricant to 
reach normal, steady-state operating temperature.  The use of a typical (i.e., mid-level) 
operator and the use of one lot of forgings ware decisions made for experimental 
“insurance”.    Table 5 shows the held-constant factors for the CNC-machining 
experiment. 
 
 

Table 5. Held-Constant Factors 
 Desired experi- Measurement                                                       
 Factor mental level and precision-how How to control Anticipated 
 (units) allowable range known? (in experiment) effects 
 
Type of cutting Standard type Not sure, but Use one type     None 
 fluid  thought to be 
   adequate 
Temperature of 100- 100°F. when 1-2° F. (estimate) Do runs after     None 
 cutting fluid machine is  machine has 
 (degrees F.) warmed up  reached 100° 
Operator Several operators - Use one "mid-     None 
 normally work  level" 
 in the process  operator 
Titanium Material Precision of lab Use one lot     Slight 
 forgings properties may tests unknown (or block on 
  vary from unit  forging lot, 
  to unit  only if 
    necessary) 
 
 
Nuisance factors are variables that probably have some effect on the response, but which 
are of little or no interest to the experimenter.  They differ from held-constant factors in 
that they either cannot be held entirely constant, or they cannot be controlled at all.  For 
example, if two lots of forgings were required to run the experiment, then the potential 
lot-to-lot differences in the material would be a nuisance variable than could not be held 
entirely constant.  In a chemical process we often cannot control the viscosity (say) of the 
incoming material feed stream—it may vary almost continuously over time.  In these 
cases, nuisance variables must be considered in either the design or the analysis of the 
experiment.  If a nuisance variable can be controlled, then we can use a design technique 
called blocking to eliminate its effect.  Blocking is discussed initially in Chapter 4.  If the 
nuisance variable cannot be controlled but it can be measured, then we can reduce its 
effect by an analysis technique called the analysis of covariance, discussed in Chapter 14. 
 
Table 6 shows the nuisance variables identified in the CNC-machining experiment.   In 
this experiment, the only nuisance factor thought to have potentially serious effects was 
the machine spindle.  The machine has four spindles, and ultimately a decision was made 
to run the experiment in four blocks.  The other factors were held constant at levels below 
which problems might be encountered. 
 
 
 



Table 6. Nuisance Factors 
 
 Measurement Strategy (e.g., 
Nuisance factor precision-how randomization, 
 (units) known? blocking, etc.) Anticipated effects 
 
Viscosity of Standard viscosity Measure viscosity at None to slight 
cutting fluid  start and end 
Ambient 1-2° F. by room Make runs below Slight, unless very 
temperature (°F.) thermometer 80'F. hot weather 
 (estimate) 
Spindle  Block or randomize Spindle-to-spindle 
  on machine spindle variation could be 
   large 
Vibration of ? Do not move heavy Severe vibration can 
machine during  objects in CNC introduce variation 
operation  machine shop within an impeller 
 
 
 
Coleman and Montgomery also found it useful to introduce an interaction sheet.  The 
concept of interactions among process variables is not an intuitive one, even to well-
trained engineers and scientists. Now it is clearly unrealistic to think that the 
experimenters can identify all of the important interactions at the outset of the planning 
process.   In most situations, the experimenters really don’t know which main effects are 
likely to be important, so asking them to make decisions about interactions is impractical.  
However, sometimes the statistically-trained team members can use this as an 
opportunity to teach others about the interaction phenomena.  When more is known about 
the process, it might be possible to use the worksheet to motivate questions such as “are 
there certain interactions that must be estimated?”  Table 7 shows the results of this 
exercise for the CNC-machining example. 
 

Table 7. Interactions 

Control 
variable 

 
y shift 

 
z shift 

 
Vendor 

 
a shift 

 
Speed 

 
Height 

 
Feed 

x shift   P     
y shift -  P     
z shift - - P     
Vendor - - - P    
a shift - - - -    
Speed - - - - -  F,D 
Height - - - - - -  
 
NOTE: Response variables are P = profile difference, F = surface finish and D = surface defects 
 
Two final points: First, an experimenter without a coordinator will probably fail.  
Furthermore, if something can go wrong, it probably will, so he coordinator will actually 
have a significant responsibility on checking to ensure that the experiment is being 
conducted as planned.  Second, concerning trial runs, this is often a very good idea—
particularly if this is the first in a series of experiments, or if the experiment has high 



significance or impact.  A trial run can consist of a center point in a factorial or a small 
part of the experiment—perhaps one of the blocks.  Since many experiments often 
involve people and machines doing something they have not done before, practice is a 
good idea.  Another reason for trial runs is that we can use them to get an estimate of the 
magnitude of experimental error.  If the experimental error is much larger than 
anticipated, then this may indicate the need for redesigning a significant part of the 
experiment.  Trial runs are also a good opportunity to ensure that measurement and data-
acquisition or collection systems are operating as anticipated.  Most experimenters never 
regret performing trial runs. 
 
Blank Guide Sheets from Coleman and Montgomery (1993) 
 
 

 Response Variables 

response 
variable 
(units) 

normal  
operating level 
& range 

meas. precision, 
accuracy 
How known? 

relationship of  
response variable 
to 
objective 

 
 

   

 
 

   

 
 

   

 
 

   

 
 
 

   

 
 

 Control Variables 
control 
variable 
(units) 

 
normal level 

& range 

meas. 
precision 

& setting error 
How known? 

proposed  
settings, 
based on 
predicted 

effects 

predicted 
effects 

(for various  
responses) 

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    

 
 

    



“Held Constant” Factors 
 

factor 
(units) 

 

desired 
experimental 

level & 
allowable range

 
measurement 

precision 
How known? 

how to  
control (in 

experiment) 

 
anticipated 

effects 

     
     
     
     
     
 
 
 
 
 
 

Nuisance Factors 
nuisance 

factor (units) 
 

measurement 
precision 
How known? 

strategy (e.g., 
randomization, 
blocking, etc.) 

 
anticipated effects 

    
    
    
    
    
    
    
    
 

Interactions 
control var. 2 3 4 5 6 7 8 

1        
2 -       
3 - -      
4 - - -     
5 - - - -    
6 - - - - -   
7 - - - - - -  

 
 
 
 
 



S-1.2  Other Graphical Aids for Planning Experiments 
In addition to the tables in Coleman and Montgomery’s Technometrics paper, there are a 
number of useful graphical aids to pre-experimental planing.  Perhaps the first person to 
suggest graphical methods for planning an experiment was Andrews (1964), who 
proposed a schematic diagram of the system much like Figure 1-1 in the textbook, with 
inputs, experimental variables, and responses all clearly labeled.  These diagrams can be 
very helpful in focusing attention on the broad aspects of the problem. 

Barton (1997) (1998) (1999) has discussed a number of useful graphical aids in planning 
experiments.  He suggests using IDEF0 diagrams to identify and classify variables.  
IDEF0 stands for Integrated Computer Aided Manufacturing Identification Language, 
Level 0.  The U. S. Air Force developed it to represent the subroutines and functions of 
complex computer software systems.  The IDEF0 diagram is a block diagram that 
resembles Figure 1-1 in the textbook.  IDEF0 diagrams are hierarchical; that is, the 
process or system can be decomposed into a series of process steps or systems and 
represented as a sequence of lower-level boxes drawn within the main block diagram. 

Figure 2 shows an IDEF0 diagram [from Barton (1999)] for a portion of a videodisk 
manufacturing process.  This figure presents the details of the disk pressing activities. 
The primary process has been decomposed into five steps, and the primary output 
response of interest is the warp in the disk. 

The  cause-and-effect diagram (or fishbone) discussed in the textbook can also be 
useful in identifying and classifying variables in an experimental design problem.  Figure 
3 [from Barton (1999)] shows a cause-and-effect diagram for the videodisk process.  
These diagrams are very useful in organizing and conducting “brainstorming” or other 
problem-solving meetings in which process variables and their potential role in the 
experiment are discussed and decided. 

Both of these techniques can be very helpful in uncovering intermediate variables.  
These are variables that are often confused with the directly adjustable process variables.   
For example, the burning rate of a rocket propellant may be affected by the presence of 
voids in the propellant material.  However, the voids are the result of mixing techniques, 
curing temperature and other process variables and so the voids themselves cannot be 
directly controlled by the experimenter. 

Some other useful papers on planning experiments include Bishop, Petersen and Trayser 
(1982), Hahn (1977) (1984), and Hunter (1977). 

 

 

 

 

 

 

 



 

 

 
Figure 2.  An IDEF0 Diagram for an Experiment in a Videodisk Manufacturing Process 



 

 

 

 
Figure 2.  A Cause-and-Effect Diagram for an Experiment in a Videodisk Manufacturing 
Process 

 

 

 

 

 

S-1.3  Montgomery’s Theorems on Designed Experiments 
Statistics courses, even very practical ones like design of experiments, tend to be a little 
dull and dry. Even for engineers, who are accustomed to taking much more exciting 
courses on topics such as fluid mechanics, mechanical vibrations, and device physics.  
Consequently, I try to inject a little humor into the course whenever possible.  For 
example, I tell them on the first class meeting that they shouldn’t look so unhappy.  If 
they had one more day to live they should choose to spend it in a statistics class—that 
way it would seem twice as long. 



I also use the following “theorems” at various times throughout the course.  Most of them 
relate to non-statistical aspects of DOX, but they point out important issues and concerns. 
 
Theorem 1.  If something can go wrong in conducting an experiment, it will.   
 
Theorem 2.  The probability of successfully completing an experiment is inversely 
proportional to the number of runs. 
 
Theorem 3.  Never let one person design and conduct an experiment alone, particularly if 
that person is a subject-matter expert in the field of study. 
 
Theorem 4.  All experiments are designed experiments; some of them are designed well, 
and some of them are designed really badly.  The badly designed ones often tell you 
nothing. 
 
Theorem 5.  About 80 percent of your success in conducting a designed experiment 
results directly from how well you do the pre-experimental planning (steps 1-3 in the 7-
step procedure in the textbook). 
 
Theorem 6.  It is impossible to overestimate the logistical complexities associated with 
running an experiment in a “complex” setting, such as a factory or plant. 
 
 
Finally, my friend Stu Hunter has for many years said that without good experimental 
design, we often end up doing PARC analysis.  This is an acronym for  

  

Planning After the Research is Complete 

 

What does PARC spell backwards? 
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