
Chapter 3 Supplemental Text Material 
 

S3-1. The Definition of Factor Effects 
As noted in Sections 3-2 and 3-3, there are two ways to write the model for a single-
factor experiment, the means model and the effects model.  We will generally use the 
effects model 
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where, for simplicity, we are working with the balanced case (all factor levels or 
treatments are replicated the same number of times).  Recall that in writing this model, 
the ith factor level mean µ i  is broken up into two components, that is µ µ τi = + i , where 

τ i is the ith treatment effect and µ is an overall mean.  We usually define µ
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This is actually an arbitrary definition, and there are other ways to define the overall 
“mean”.  For example, we could define  
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This would result in the treatment effect defined such that  
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Here the overall mean is a weighted average of the individual treatment means.  When 
there are an unequal number of observations in each treatment, the weights wi could be 
taken as the fractions of the treatment sample sizes ni/N.   
 

S3-2. Expected Mean Squares 

In Section 3-3.1 we derived the expected value of the mean square for error in the single-
factor analysis of variance.  We gave the result for the expected value of the mean square 
for treatments, but the derivation was omitted.  The derivation is straightforward. 

Consider 
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Now for a balanced design 
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and the model is  
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In addition, we will find the following useful: 
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Consider the first term on the right hand side of the above expression: 
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Squaring the expression in parentheses and taking expectation results in  
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because the three cross-product terms are all zero.  Now consider the second term on the 
right hand side of : E SSTreatments( )
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since   Upon squaring the term in parentheses and taking expectation, we obtain τ i
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since the expected value of the cross-product is zero.  Therefore,  
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Consequently the expected value of the mean square for treatments is  
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This is the result given in the textbook. 

 

S3-3. Confidence Interval for σ2 

In developing the analysis of variance (ANOVA) procedure we have observed that the 
error variance  is estimated by the error mean square; that is,  σ 2
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We now give a confidence interval for .  Since we have assumed that the observations 
are normally distributed, the distribution of  
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distribution with N-a degrees of freedom, respectively.  Now if we rearrange the 
expression inside the probability statement we obtain 
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Therefore, a 100(1-α) percent confidence interval on the error variance σ2 is  
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This confidence interval expression is also given in Chapter 12 on experiments with 
random effects. 



Sometimes an experimenter is interested in an upper bound on the error variance; that is, 
how large could σ2 reasonably be?  This can be useful when there is information about σ2 
from a prior experiment and the experimenter is performing calculations to determine 
sample sizes for a new experiment.  An upper 100(1-α) percent confidence limit on σ2 is 
given by 
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If a 100(1-α) percent confidence interval on the standard deviation σ is desired instead, 
then  
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S3-4. Simultaneous Confidence Intervals on Treatment Means 
In section 3-3.3 we discuss finding confidence intervals on a treatment mean and on 
differences between a pair of means.  We also show how to find simultaneous confidence 
intervals on a set of treatment means or a set of differences between pairs of means using 
the Bonferroni approach.  Essentially, if there are a set of r confidence statements to be 
constructed the Bonferroni method simply replaces α/2 by α/(2r).  this produces a set of  
r confidence intervals for which the overall confidence level is at least 100(1-α) percent. 

To see why this works, consider the case where r = 2; that is, we have two 100(1-α) 
percent confidence intervals.  Let E1 denote the event that the first confidence interval is 
not correct (it does not cover the true mean) and E2 denote the even that the second 
confidence interval is incorrect.  Now  
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Now we know that , so from the last equation above we obtain the 
Bonferroni inequality 
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In the context of our example, the left-hand side of this inequality is the probability that 
both of the two confidence interval statements is correct and P E P E( ) ( )1 2= = α , so 
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Therefore, if we want the probability that both of the confidence intervals are correct to 
be at least 1-α we can assure this by constructing 100(1-α/2) percent individual 
confidence interval. 

If there are r confidence intervals of interest, we can use mathematical induction to show 
that  

P E E E P E

r

r i
i

r

( )1 2
1

1

1

∩ ∩ ∩ ≥ −

≥ −
=
∑
α

( )  

As noted in the text, the Bonferroni method works reasonably well when the number of 
simultaneous confidence intervals that you desire to construct, r, is not too large.  As r 
becomes larger, the lengths of the individual confidence intervals increase.  The lengths 
of the individual confidence intervals can become so large that the intervals are not very 
informative.  Also, it is not necessary that all individual confidence statements have the 
same level of confidence.  One might select 98 percent for one statement and 92 percent 
for the other, resulting in two confidence intervals for which the simultaneous confidence 
level is at least 90 percent. 

 

S3-5. Regression Models for a Quantitative Factor 

Regression models are discussed in detail in Chapter 10, but they appear relatively often 
throughout the book because it is convenient to express the relationship between the 
response and quantitative design variables in terms of an equation.  When there is only a 
singe quantitative design factor, a linear regression model relating the response to the 
factor is  

y x= + +β β ε0 1  

where x represents the values of the design factor.  In a single-factor experiment there are 
N observations, and each observation can be expressed in terms of this model as follows: 
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The method of least squares is used to estimate the unknown parameters (the β’s) in this 
model.  This involves estimating the parameters so that the sum of the squares of the 
errors is minimized.  The least squares function is  
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To find the least squares estimators we take the partial derivatives of L with respect to the 
β’s and equate to zero: 
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After simplification, we obtain the least squares normal equations 
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where are the least squares estimators of the model parameters.  So, to fit this 
particular model to the experimental data by least squares, all we have to do is solve the 
normal equations.  Since there are only two equations in two unknowns, this is fairly 
easy. 

β 0 and 

In the textbook we fit two regression models for the response variable etch rate (y) as a 
function of the RF power (x); the linear regression model shown above, and a quadratic 
model 

y x x= + + +β β β0 1 2
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The least squares normal equations for the quadratic model are 
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Obviously as the order of the model increases and there are more unknown parameters to 
estimate, the normal equations become more complicated.  In Chapter 10 we use matrix 
methods to develop the general solution.  Most statistics software packages have very 
good regression model fitting capability. 

 

S3-6. More About Estimable Functions 
In Section 3-9.1 we use the least squares approach to estimating the parameters in the 
single-factor model.  Assuming a balanced experimental design, we fine the least squares 
normal equations as Equation 3-48, repeated below: 
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where an = N  is the total number of observations.  As noted in the textbook, if we add 
the last a of these normal equations we obtain the first one.  That is, the normal equations 
are not linearly independent and so they do not have a unique solution.  We say that the 
effects model is an overparameterized model. 

One way to resolve this is to add another linearly independent equation to the normal 

equations.  The most common way to do this is to use the equation .  This is 

consistent with defining the factor effects as deviations from the overall mean µ.  If we 
impose this constraint, the solution to the normal equations is  
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That is, the overall mean is estimated by the average of all an sample observation, while 
each individual factor effect is estimated by the difference between the sample average 
for that factor level and the average of all observations. 

Another possible choice of constraint is to set the overall mean equal to a constant, say 
µ = 0.  This results in the solution  
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Still a third choice is τ a = 0 .  This is the approach used in the SAS software, for 
example.  This choice of constraint produces the solution  
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There are an infinite number of possible constraints that could be used to solve the 
normal equations. Fortunately, as observed in the book, it really doesn’t matter. For each 
of the three solutions above (indeed for any solution to the normal equations) we have  
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That is, the least squares estimator of the mean of the ith factor level will always be the 
sample average of the observations at that factor level.  So even if we cannot obtain 
unique estimates for the parameters in the effects model we can obtain unique estimators 
of a function of these parameters that we are interested in.  

This is the idea of estimable functions.  Any function of the model parameters that can 
be uniquely estimated regardless of the constraint selected to solve the normal equations 
is an estimable function.   

What functions are estimable?  It can be shown that the expected value of any 
observation is estimable.  Now  

E yij i( ) = +µ τ  

so as shown above, the mean of the ith treatment is estimable.  Any function that is a 
linear combination of the left-hand side of the normal equations is also estimable.  For 
example, subtract the third normal equation from the second, yielding τ τ2 1− .  
Consequently, the difference in any two treatment effect is estimable.  In general, any 

contrast in the treatment effects is estimable.  Notice that the 

individual model parameters 
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µ τ τ, , ,1 a are not estimable, as there is no linear 
combination of the normal equations that will produce these parameters separately. 
However, this is generally not a problem, for as observed previously, the estimable 
functions correspond to functions of the model parameters that are of interest to 
experimenters. 

For an excellent and very readable discussion of estimable functions, see Myers, R. H. 
and Milton, J. S. (1991), A First Course in the Theory of the Linear Model, PWS-Kent, 
Boston. MA. 

 

S3-7. The Relationship Between Regression and ANOVA 
Section 3-9 explored some of the connections between analysis of variance (ANOVA) 
models and regression models. We showed how least squares methods could be used to 
estimate the model parameters and how the ANOVA can be developed by a regression-
based procedure called the general regression significance test can be used to develop the 
ANOVA test statistic.  Every ANOVA model can be written explicitly as an equivalent 
linear regression model.  We now show how this is done for the single-factor experiment 
with a = 3 treatments. 

The single-factor balanced ANOVA model is  
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The equivalent regression model is  
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where the variables x1j and x2j are defined as follows: 
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The relationships between the parameters in the regression model and the parameters in 
the ANOVA model are easily determined.  For example, if the observations come from 
treatment 1, then x1j = 1 and x2j = 0 and the regression model is  
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Since in the ANOVA model these observations are defined by y j j1 1 1= + +µ τ ε , this 
implies that 
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Similarly, if the observations are from treatment 2, then  
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and the relationship between the parameters is 

β β µ µ τ0 2 2 2+ = = +  

Finally, consider observations from treatment 3, for which the regression model is  
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and we have  

β µ µ τ0 3 3= = +  

Thus in the regression model formulation of the one-way ANOVA model, the regression 
coefficients describe comparisons of the first two treatment means with the third 
treatment mean; that is 
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In general, if there are a treatments, the regression model will have a – 1 regressor 
variables, say 
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where 
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Since these regressor variables only take on the values 0 and 1, they are often called 
indicator variables.  The relationship between the parameters in the ANOVA model and 
the regression model is 
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Therefore the intercept is always the mean of the ath treatment and the regression 
coefficient βi estimates the difference between the mean of the ith treatment and the ath 
treatment.   

Now consider testing hypotheses. Suppose that we want to test that all treatment means 
are equal (the usual null hypothesis).  If this null hypothesis is true, then the parameters in 
the regression model become 
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Using the general regression significance test procedure, we could develop a test for this 
hypothesis.  It would be identical to the F-statistic test in the one-way ANOVA. 

 

Most regression software packages automatically test the hypothesis that all model 
regression coefficients (except the intercept) are zero.  We will illustrate this using 
Minitab and the data from the plasma etching experiment in Example 3-1.  Recall in this 
example that the engineer is interested in determining the effect of RF power on etch rate, 
and he has run a completely randomized experiment with four levels of RF power and 
five replicates.  For convenience, we repeat the data from Table 3-1 here: 

 
 
RF Power 
(W) 

Observed etch rate 
 

         1                          2                          3                          4                            5
160 575 542 530 539 570 
180 565 593 590 579 610 
200 600 651 610 637 629 
220 725 700 715 685 710 
 
The data was converted into the xij 0/1 indicator variables as described above.  Since 
there are 4 treatments, there are only 3 of the x’s.  The coded data that is used as input to 
Minitab is shown below: 
 
 



 
x1 x2 x3 Etch rate 
1 0 0 575 
1 0 0 542 
1 0 0 530 
1 0 0 539 
1 0 0 570 
0 1 0 565 
0 1 0 593 
0 1 0 590 
0 1 0 579 
0 1 0 610 
0 0 1 600 
0 0 1 651 
0 0 1 610 
0 0 1 637 
0 0 1 629 
0 0 0 725 
0 0 0 700 
0 0 0 715 
0 0 0 685 
 
 
 
The Regression Module in Minitab was run using the above spreadsheet where x1 
through x3 were used as the predictors and the variable “Etch rate” was the response.  
The output is shown below. 
 
 
Regression Analysis: Etch rate versus x1, x2, x3  
 
The regression equation is 
Etch rate = 707 - 156 x1 - 120 x2 - 81.6 x3 
 
 
Predictor     Coef  SE Coef       T      P 
Constant   707.000    8.169   86.54  0.000 
x1         -155.80    11.55  -13.49  0.000 
x2         -119.60    11.55  -10.35  0.000 
x3          -81.60    11.55   -7.06  0.000 
 
 
S = 18.2675   R-Sq = 92.6%   R-Sq(adj) = 91.2% 
 
 
Analysis of Variance 
 
Source          DF     SS     MS      F      P 
Regression       3  66871  22290  66.80  0.000 
Residual Error  16   5339    334 

 



 
Notice that the ANOVA table in this regression output is identical (apart from rounding) 
to the ANOVA display in Table 3-4.  Therefore, testing the hypothesis that the regression 
coefficients β β β β1 2 3 4 0= = = =  in this regression model is equivalent to testing the 
null hypothesis of equal treatment means in the original ANOVA model formulation. 

Also note that the estimate of the intercept or the “constant” term in the above table is the 
mean of the 4th treatment.  Furthermore, each regression coefficient is just the difference 
between one of the treatment means and the 4th treatment mean. 
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