
Chapter 5 Supplemental Text Material 
 

S5-1. Expected Mean Squares in the Two-factor Factorial 
Consider the two-factor fixed effects model 
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given as Equation (5-1) in the textbook.  We list the expected mean squares for this 
model, but do not develop them.  It is relatively easy to develop the expected mean 
squares from direct application of the expectation operator. 

Consider finding 
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where SSA is the sum of squares for the row factor.  Since 
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Furthermore, we can easily show that 

y abn... ...= +µ ε  
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Therefore 
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which is the result given in the textbook.  The other expected mean squares are derived 
similarly.  

 

S5-2. The Definition of Interaction 
In Section 5-1 we introduced both the effects model and the means model for the two-
factor factorial experiment. If there is no interaction in the two-factor model, then  

µ µ τ βij i j= + +  

Define the row and column means as  
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Then if there is no interaction,  

µ µ µ µij i j= + −. .  



where .  It can also be shown that if there is no interaction, 

each cell mean can be expressed in terms of three other cell means: 

µ µ µ= = ∑∑ i ji
a. / /j b.

µ µ µ µij ij i j i j= + −′ ′ ′ ′  

This illustrates why a model with no interaction is sometimes called an additive model, 
or why we say the treatment effects are additive.  

When there is interaction, the above relationships do not hold.  Thus the interaction term 
( )τβ ij can be defined as  
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or equivalently,  
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Therefore, we can determine whether there is interaction by determining whether all the 
cell means can be expressed as µ µ τ βij i j= + + .   

Sometimes interactions are a result of the scale on which the response has been 
measured.  Suppose, for example, that factor effects act in a multiplicative fashion,  

µ µτ βij i j=  

If we were to assume that the factors act in an additive manner, we would discover very 
quickly that there is interaction present.  This interaction can be removed by applying a 
log transformation, since 

log log log logµ µ τ βij i j= + +  

This suggests that the original measurement scale for the response was not the best one to 
use if we want results that are easy to interpret (that is, no interaction).  The log scale for 
the response variable would be more appropriate.   

Finally, we observe that it is very possible for two factors to interact but for the main 
effects for one (or even both) factor is small, near zero.  To illustrate, consider the two-
factor factorial with interaction in Figure 5-1 of the textbook.  We have already noted that 
the interaction is large, AB = -29.  However, the main effect of factor A is A = 1.  Thus, 
the main effect of A is so small as to be negligible.  Now this situation does not occur all 
that frequently, and typically we find that interaction effects are not larger than the main 
effects. However, large two-factor interactions can mask one or both of the main effects. 
A prudent experimenter needs to be alert to this possibility. 

 

S5-3. Estimable Functions in the Two-factor Factorial Model 

The least squares normal equations for the two-factor factorial model are given in 
Equation (5-14) in the textbook as: 
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Recall that in general an estimable function must be a linear combination of the left-hand 
side of the normal equations.  Consider a contrast comparing the effects of row 
treatments i and .  The contrast is ′i

τ τ τβ τβi i i i− + −′ ′( ) ( ). .  

Since this is just the difference between two normal equations, it is an estimable function.  
Notice that the difference in any two levels of the row factor also includes the difference 
in average interaction effects in those two rows.  Similarly, we can show that the 
difference in any pair of column treatments also includes the difference in average 
interaction effects in those two columns.  An estimable function involving interactions is  

( ) ( ) ( ) ( ). . .τβ τβ τβ τβij i j− − + .  

It turns out that the only hypotheses that can be tested in an effects model must involve 
estimable functions.  Therefore, when we test the hypothesis of no interaction, we are 
really testing the null hypothesis 

H iij i j0:( ) ( ) ( ) ( ) ,. . ..τβ τβ τβ τβ− − + = 0 for all j  

When we test hypotheses on main effects A and B we are really testing the null 
hypotheses 

H a a0 1 1 2 2: ( ) ( ) ( ). . .  τ τβ τ τβ τ τβ+ = + = = +

and 

H b b0 1 1 2 2: ( ) ( ) ( ). .β τβ β τβ β τβ+ = + = = + .  

That is, we are not really testing a hypothesis that involves only the equality of the 
treatment effects, but instead a hypothesis that compares treatment effects plus the 
average interaction effects in those rows or columns.  Clearly, these hypotheses may not 
be of much interest, or much practical value, when interaction is large.  This is why in the 
textbook (Section 5-1) that when interaction is large, main effects may not be of much 
practical value.  Also, when interaction is large, the statistical tests on main effects may 
not really tell us much about the individual treatment effects.  Some statisticians do not 
even conduct the main effect tests when the no-interaction null hypothesis is rejected. 

It can be shown [see Myers and Milton (1991)] that the original effects model 
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or 

yijk i j ij ijk= + + + +µ τ β τβ ε* * * *( )  

It can be shown that each of the new parameters  is estimable.  
Therefore, it is reasonable to expect that the hypotheses of interest can be expressed 
simply in terms of these redefined parameters.  It particular, it can be shown that there is 
no interaction if and only if .  Now in the text, we presented the null hypothesis 
of no interaction as 

µ τ β τβ* * * *, , , ( )i j  and ij

( )*τβ ij = 0
H ij0 0:( )τβ =  for all i and j.  This is not incorrect so long as it is 

understood that it is the model in terms of the redefined (or “starred”) parameters that we 
are using.  However, it is important to understand that in general interaction is not a 
parameter that refers only to the (ij)th cell, but it contains information from that cell, the 
ith row, the jth column, and the overall average response. 

One final point is that as a consequence of defining the new “starred” parameters, we 
have included certain restrictions on them.  In particular, we have  
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These are the “usual constraints” imposed on the normal equations.  Furthermore, the 
tests on main effects become 

H a0 1 2 0: * * *τ τ τ= = = =  

and  

H b0 1 2 0: * * *β β β= = = =  

This is the way that these hypotheses are stated in the textbook, but of course, without the 
“stars”. 

 

S5-4. Regression Model Formulation of the Two-factor Factorial 

We noted in Chapter 3 that there was a close relationship between ANOVA and 
regression, and in the Supplemental Text Material for Chapter 3 we showed how the 
single-factor ANOVA model could be formulated as a regression model.  We now show 
how the two-factor model can be formulated as a regression model and a standard 
multiple regression computer program employed to perform the usual ANOVA.   

 

 

 



We will use the battery life experiment of Example 5-1 to illustrate the procedure.  Recall 
that there are three material types of interest (factor A) and three temperatures (factor B), 
and the response variable of interest is battery life.  The regression model formulation of 
an ANOVA model uses indicator variables. We will define the indicator variables for 
the design factors material types and temperature as follows: 

 

Material type X1 X2

1 0 0 

2 1 0 

3 0 1 

  

 

Temperature X3 X4

15 0 0 

70 1 0 

125 0 1 

 

The regression model is  

y x x x x
x x x x x x x x

ijk ijk ijk ijk ijk
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= + + + +

+ + + + +

β β β β β

β β β β
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5 1 3 6 1 4 7 2 3 8 2 4 ε
                 (1) 

where i, j =1,2,3 and the number of replicates k = 1,2,3,4.  In this model, the terms 
β β1 1 2 2x xijk ijk+  represent the main effect of factor A (material type), and the terms 
β β3 3 4 4x xijk ijk+  represent the main effect of temperature.  Each of these two groups of 
terms contains two regression coefficients, giving two degrees of freedom.  The terms 
β β β β5 1 3 6 1 4 7 2 3 8 2 4x x x x x x x xijk ijk ijk ijk ijk ijk ijk ijk+ + +  in Equation (1) represent the AB 
interaction with four degrees of freedom.  Notice that there are four regression 
coefficients in this term. 

Table 1 shows the data from this experiment, originally presented in Table 5-1 of the text. 
In Table 1, we have shown the indicator variables for each of the 36 trials of this 
experiment.  The notation in this table is Xi = xi, i=1,2,3,4 for the main effects in the 
above regression model and X5 = x1x3, X6 = x1x4,, X7 = x2x3, and X8 = x2x4, for the 
interaction terms in the model. 

 

 

 



 

Table 1. Data from Example 5-1 in Regression Model Form 

Y X1 X2 X3 X4 X5 X6 X7 X8

130 0 0 0 0 0 0 0 0 
34 0 0 1 0 0 0 0 0 
20 0 0 0 1 0 0 0 0 
150 1 0 0 0 0 0 0 0 
136 1 0 1 0 1 0 0 0 
25 1 0 0 1 0 1 0 0 
138 0 1 0 0 0 0 0 0 
174 0 1 1 0 0 0 1 0 
96 0 1 0 1 0 0 0 1 
155 0 0 0 0 0 0 0 0 
40 0 0 1 0 0 0 0 0 
70 0 0 0 1 0 0 0 0 
188 1 0 0 0 0 0 0 0 
122 1 0 1 0 1 0 0 0 
70 1 0 0 1 0 1 0 0 
110 0 1 0 0 0 0 0 0 
120 0 1 1 0 0 0 1 0 
104 0 1 0 1 0 0 0 1 
74 0 0 0 0 0 0 0 0 
80 0 0 1 0 0 0 0 0 
82 0 0 0 1 0 0 0 0 
159 1 0 0 0 0 0 0 0 
106 1 0 1 0 1 0 0 0 
58 1 0 0 1 0 1 0 0 
168 0 1 0 0 0 0 0 0 
150 0 1 1 0 0 0 1 0 
82 0 1 0 1 0 0 0 1 
180 0 0 0 0 0 0 0 0 
75 0 0 1 0 0 0 0 0 
58 0 0 0 1 0 0 0 0 
126 1 0 0 0 0 0 0 0 
115 1 0 1 0 1 0 0 0 
45 1 0 0 1 0 1 0 0 
160 0 1 0 0 0 0 0 0 
139 0 1 1 0 0 0 1 0 
60 0 1 0 1 0 0 0 1 

 
This table was used as input to the Minitab regression procedure, which produced the 
following results for fitting Equation (1):  

 

Regression Analysis 
The regression equation is 
y = 135 + 21.0 x1 + 9.2 x2 - 77.5 x3 - 77.2 x4 + 41.5 x5 - 29.0 x6 
 +79.2 x7 + 18.7 x8 



minitab Output (Continued) 
 
Predictor        Coef       StDev          T        P 
Constant       134.75       12.99      10.37    0.000 
x1              21.00       18.37       1.14    0.263 
x2               9.25       18.37       0.50    0.619 
x3             -77.50       18.37      -4.22    0.000 
x4             -77.25       18.37      -4.20    0.000 
x5              41.50       25.98       1.60    0.122 
x6             -29.00       25.98      -1.12    0.274 
x7              79.25       25.98       3.05    0.005 
x8              18.75       25.98       0.72    0.477 
 
S = 25.98       R-Sq = 76.5%     R-Sq(adj) = 69.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         8     59416.2      7427.0     11.00    0.000 
Residual Error    27     18230.7       675.2 
Total             35     77647.0 
 
Source       DF      Seq SS 
x1            1       141.7 
x2            1     10542.0 
x3            1        76.1 
x4            1     39042.7 
x5            1       788.7 
x6            1      1963.5 
x7            1      6510.0 
x8            1       351.6 

 

First examine the Analysis of Variance information in the above display.  Notice that the 
regression sum of squares with 8 degrees of freedom is equal to the sum of the sums of 
squares for the main effects material types and temperature and the interaction sum of 
squares from Table 5-5 in the textbook.  Furthermore, the number of degrees of freedom 
for regression (8) is the sum of the degrees of freedom for main effects and interaction (2 
+2 + 4) from Table 5-5.  The F-test in the above ANOVA display can be thought of as 
testing the null hypothesis that all of the model coefficients are zero; that is, there are no 
significant main effects or interaction effects, versus the alternative that there is at least 
one nonzero model parameter.  Clearly this hypothesis is rejected. Some of the treatments 
produce significant effects. 

Now consider the “sequential sums of squares” at the bottom of the above display.  
Recall that X1 and X2 represent the main effect of material types. The sequential sums of 
squares are computed based on an “effects added in order” approach, where the “in 
order” refers to the order in which the variables are listed in the model. Now  



SS SS X SS X XMaterialTypes = + = + =( ) ( | ) . . .1 2 1 1417 10542 0 106837  

which is the sum of squares for material types in table 5-5.  The notation  
indicates that this is a “sequential” sum of squares; that is, it is the sum of squares for 
variable X

SS X X( | )2 1

2  given that variable X1 is already in the regression model. 

Similarly,  

SS SS X X X SS X X X XTemperature = + = + =( | , ) ( | , , ) . . .3 1 2 4 1 2 3 761 39042 7 391188  

which closely agrees with the sum of squares for temperature from Table 5-5.  Finally, 
note that the interaction sum of squares from Table 5-5 is  

SS SS X X X X X SS X X X X X X
SS X X X X X X X SS X X X X X X X X

Interaction = +
+ +
= + + + =

( | , , , ) ( | , , , , )
( | , , , , , ) ( | , , , , , ,
. . . . .

5 1 1 3 4 6 1 1 3 4 5

7 1 2 3 4 5 6 8 1 2 3 4 5 6 7

788 7 19635 6510 0 3516 96138
)  

When the design is balanced, that is, we have an equal number of observations in each 
cell, we can show that this model regression approach using the sequential sums of 
squares produces results that are exactly identical to the “usual” ANOVA.  Furthermore, 
because of the balanced nature of the design, the order of the variables A and B does not 
matter.  

The “effects added in order” partitioning of the overall model sum of squares is 
sometimes called a Type 1 analysis.  This terminology is prevalent in the SAS statistics 
package, but other authors and software systems also use it.   An alternative partitioning 
is to consider each effect as if it were added last to a model that contains all the others.  
This “effects added last” approach is usually called a Type 3 analysis.  

There is another way to use the regression model formulation of the two-factor factorial 
to generate the standard F-tests for main effects and interaction.  Consider fitting the 
model in Equation (1), and let the regression sum of squares in the Minitab output above 
for this model be the model sum of squares for the full model.  Thus,  

SSModel ( ) .FM = 59416 2  

with 8 degrees of freedom.  Suppose we want to test the hypothesis that there is no 
interaction.  In terms of model (1), the no-interaction hypothesis is  

H
H j

0 5 6 7 8

0

0
0 5 6 7

:
: , j 8, , ,
β β β β

β
= = = =

≠ = at least one 
                                       (2) 

When the null hypothesis is true, a reduced model is  

y x x x xijk ijk ijk ijk ijk ijk= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4                                 (3) 

Fitting Equation (2) using Minitab produces the following: 

 

 
The regression equation is 
y = 122 + 25.2 x1 + 41.9 x2 - 37.3 x3 - 80.7 x4 



 
Predictor        Coef       StDev          T        P 
Constant       122.47       11.17      10.97    0.000 
x1              25.17       12.24       2.06    0.048 
x2              41.92       12.24       3.43    0.002 
x3             -37.25       12.24      -3.04    0.005 
x4             -80.67       12.24      -6.59    0.000 
 
S = 29.97       R-Sq = 64.1%     R-Sq(adj) = 59.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4       49802       12451     13.86    0.000 
Residual Error    31       27845         898 
Total             35       77647 
 
The model sum of squares for this reduced model is  

SSModel (RM) = 49802.0  

with 4 degrees of freedom.  The test of the no-interaction hypotheses (2) is conducted 
using the “extra” sum of squares 

SS SS SSModel Model Model( (
, . , .

, .

Interaction) = FM) RM)
=

(−
−

=
59 416 2 49 812 0
9 604 2

 

with 8 – 4 = 4 degrees of freedom.  This quantity is, apart from round-off errors in the 
way the results are reported in Minitab, the interaction sum of squares for the original 
analysis of variance in Table 5-5 of the text.  This is a measure of fitting interaction after 
fitting the main effects. 

Now consider testing for no main effect of material type.  In terms of equation (1), the 
hypotheses are 

H
H j
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:
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β
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                                        (4) 

Because we are using a balanced design, it turns out that to test this hypothesis all we 
have to do is to fit the model 

y x xijk ijk ijk ijk= + + +β β β ε0 1 1 2 2                                            (5) 

Fitting this model in Minitab produces 

Regression Analysis 
The regression equation is 
y = 83.2 + 25.2 x1 + 41.9 x2 
 
Predictor        Coef       StDev          T        P 
Constant        83.17       13.00       6.40    0.000 
x1              25.17       18.39       1.37    0.180 
x2              41.92       18.39       2.28    0.029 



 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2       10684        5342      2.63    0.087 
Residual Error    33       66963        2029 
Total             35       77647 
 
Notice that the regression sum of squares for this model [Equation (5)] is essentially 
identical to the sum of squares for material types in table 5-5 of the text.  Similarly, 
testing that there is no temperature effect is equivalent to testing 

H
H j

0 3 4

0

0
0 3

:
: j 4, ,
β β

β
= =

≠ = at least one 
                                          (6) 

To test the hypotheses in (6), all we have to do is fit the model 

y x xijk ijk ijk ijk= + + +β β β ε0 3 3 4 4                                            (7) 

The Minitab regression output is 

Regression Analysis 
The regression equation is 
y = 145 - 37.3 x3 - 80.7 x4 
 
Predictor        Coef       StDev          T        P 
Constant      144.833       9.864      14.68    0.000 
x3             -37.25       13.95      -2.67    0.012 
x4             -80.67       13.95      -5.78    0.000 
 
S = 34.17       R-Sq = 50.4%     R-Sq(adj) = 47.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2       39119       19559     16.75    0.000 
Residual Error    33       38528        1168 
Total             35       77647 
 
Notice that the regression sum of squares for this model, Equation (7), is essentially equal 
to the temperature main effect sum of squares from Table 5-5.  

 

S5-5. Model Hierarchy 

In Example 5-4 we used the data from the battery life experiment (Example 5-1) to 
demonstrate fitting response curves when one of the factors in a two-factor factorial 
experiment was quantitative and the other was qualitative.  In this case the factors are 
temperature (A) and material type (B).  Using the Design-Expert software package, we fit 
a model that the main effect of material type, the linear and quadratic effects of 
temperature, the material type by linear effect of temperature interaction, and the material 
type by quadratic effect of temperature interaction.  Refer to Table 5-15 in the textbook.  
From examining this table, we observed that the quadratic effect of temperature and the 



material type by linear effect of temperature interaction were not significant; that is, they 
had fairly large P-values.    We left these non-significant terms in the model to preserve 
hierarchy. 

The hierarchy principal states that if a model contains a higher-order term, then it should 
also contain all the terms of lower-order that comprise it.  So, if a second-order term, 
such as an interaction, is in the model then all main effects involved in that interaction as 
well as all lower-order interactions involving those factors should also be included in the 
model. 

There are times that hierarchy makes sense.  Generally, if the model is going to be used 
for explanatory purposes then a hierarchical model is quite logical.  On the other hand, 
there may be situations where the non-hierarchical model is much more logical.  To 
illustrate, consider another analysis of Example 5-4 in Table 2, which was obtained from 
Design-Expert.  We have selected a non-hierarchical model in which the quadratic effect 
of temperature was not included (it was in all likelihood the weakest effect), but both 
two-degree-of-freedom components of the temperature-material type interaction are in 
the model.  Notice from Table 2 that the residual mean square is smaller for the non-
hierarchical model (653.81 versus 675.21 from Table 5-15).  This is important, because 
the residual mean square can be thought of as the variance of the unexplained residual 
variability, not accounted for by the model.  That is, the non-hierarchical model is 
actually a better fit to the experimental data. 

Notice also that the standard errors of the model parameters are smaller for the non-
hierarchical model.  This is an indication that he parameters are estimated with better 
precision by leaving out the nonsignificant terms, even though it results in a model that 
does not obey the hierarchy principal.   Furthermore, note that the 95 percent confidence 
intervals for the model parameters in the hierarchical model are always longer than their 
corresponding confidence intervals in the non-hierarchical model.  The non-hierarchical 
model, in this example, does indeed provide better estimates of the factor effects that 
obtained from the hierarchical model 
 

Table 2. Design-Expert Output for Non-hierarchical Model, Example 5-4.  
________________________________________________________________________ 
         ANOVA for Response Surface Reduced Cubic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of                Mean                        F  
 Source Squares          DF                 Square                     Value     Prob > F 
 Model     59340.17 7 8477.17 12.97 < 0.0001 
 A 10683.72 2 5341.86 8.17 0.0016 
 B 39042.67 1 39042.67 59.72 < 0.0001 
 AB 2315.08 2 1157.54 1.77 0.1888 
 AB2 7298.69 2 3649.35 5.58 0.0091 
Residual 18306.81 28 653.81 
Lack of Fit 76.06 1 76.06 0.11 0.7398 
Pure Error 18230.75 27 675.21 
Cor Total 77646.97 35 
 



 Std. Dev. 25.57 R-Squared 0.7642 
 Mean 105.53 Adj R-Squared 0.7053 
 C.V. 24.23 Pred R-Squared 0.6042 
 PRESS 30729.09 Adeq Precision 8.815 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High  
Intercept 105.53 1 4.26 96.80 114.26 
 A[1]              -50.33 1 10.44 -71.72 -28.95 
 A[2]              12.17  1 10.44 -9.22 33.55 
 B-Temp       -40.33 1 5.22 -51.02 -29.64 
 A[1]B              1.71 1 7.38 -13.41 16.83 
 A[2]B           -12.79 1 7.38 -27.91 2.33 
 A[1]B2          41.96 1 12.78 15.77 68.15 
 A[2]B2        -14.04 1 12.78 -40.23 12.15 
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