
Chapter 6.  Supplemental Text Material 
 

S6-1. Factor Effect Estimates are Least Squares Estimates 
We have given heuristic or intuitive explanations of how the estimates of the factor 
effects are obtained in the textbook.  Also, it has been pointed out that in the regression 
model representation of the 2k factorial, the regression coefficients are exactly one-half 
the effect estimates.  It is straightforward to show that the model coefficients (and hence 
the effect estimates) are least squares estimates. 

Consider a 22 factorial.  The regression model is  

y x x x xi i i i i= i+ + + +β β β β ε0 1 1 2 2 12 1 2  

The data for the 22 experiment is shown in the following table: 

 

Run, i Xi1 Xi2 Xi1Xi2 Response total 

1 -1 -1 1 (1) 

2 1 -1 -1 a 

3 -1 1 -1 b 

4 1 1 1 ab 

 

The least squares estimates of the model parameters β  are chosen to minimize the sum of 
the squares of the model errors: 
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It is straightforward to show that the least squares normal equations are  
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Now since  because the design is 

orthogonal, the normal equations reduce to a very simple form: 
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The solution is  
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These regression model coefficients are exactly one-half the factor effect estimates.  
Therefore, the effect estimates are least squares estimates.  We will show this in a more 
general manner in Chapter 10. 

 

S6-2. Yates’s Method for Calculating Effect Estimates 
While we typically use a computer program for the statistical analysis of a 2k design, 
there is a very simple technique devised by Yates (1937) for estimating the effects and 
determining the sums of squares in a 2k factorial design. The procedure is occasionally 
useful for manual calculations, and is best learned through the study of a numerical 
example. 

Consider the data for the 23 design in Example 6-1.  These data have been entered in 
Table 1 below.  The treatment combinations are always written down in standard order, 
and the column labeled "Response" contains the corresponding observation (or total of all 
observations) at that treatment combination.  The first half of column (1) is obtained by 
adding the responses in adjacent pairs.  The second half of column (1) is obtained by 
changing the sign of the first entry in each of the pairs in the Response column and 
adding the adjacent pairs.  For example, in column (1) we obtain for the fifth entry 5 = -(-
4) + 1, for the sixth entry 6 = -(-1) + 5, and so on. 

Column (2) is obtained from column (1) just as column (1) is obtained from the Response 
column.  Column (3) is obtained from column (2) similarly.  In general, for a 2k design 
we would construct k columns of this type.  Column (3) [in general, column (k)] is the 
contrast for the effect designated at the beginning of the row.  To obtain the estimate of 
the effect, we divide the entries in column (3) by n2k-1 (in our example, n2k-1 = 8).  
Finally, the sums of squares for the effects are obtained by squaring the entries in column 
(3) and dividing by n2k (in our example, n2k = (2)23 = 16). 

 



 
Table 1.Yates's Algorithm for the Data in Example 6-1 

   Estimate Sum of 
Treatment  of Effect Squares 
Combination Response (1) (2) (3)           Effect      (3)÷n2k-1(3)2÷n2k-1  
        (1)                 -4    -3 1 16 I                ---       --- 
         a                    1  4 15 24 A 3.00  36.00 
         b                   -1  2 11 18 B 2.25  20.25 
        ab                   5  13 13 6 A B 0.75  2.25 
         c                   -1  5 7 14 C 1.75  12.25 
        ac                   3  6 11 2 A C 0.25  0.25 
        bc                   2  4 1 4 B C 0.50  1.00 
        abc                 11 9 5 4 ABC 0.50  1.00 
 
        
The estimates of the effects and sums of squares obtained by Yates' algorithm for the data 
in Example 6-1 are in agreement with the results found there by the usual methods.  Note 
that the entry in column (3) [in general, column (k)] for the row corresponding to (1) is 
always equal to the grand total of the observations. 

In spite of its apparent simplicity, it is notoriously easy to make numerical errors in 
Yates's algorithm, and we should be extremely careful in executing the procedure.  As a 
partial check on the computations, we may use the fact that the sum of the squares of the 
elements in the jth column is 2j times the sum of the squares of the elements in the 
response column.  Note, however, that this check is subject to errors in sign in column j. 
See Davies (1956), Good (1955, 1958), Kempthorne (1952), and Rayner (1967) for other 
error-checking techniques. 
 
S6-3. A Note on the Variance of a Contrast 

In analyzing 2k factorial designs, we frequently construct a normal probability plot of the 
factor effect estimates and visually select a tentative model by identifying the effects that 
appear large.  These effect estimates are typically relatively far from the straight line 
passing through the remaining plotted effects. 

This method works nicely when (1) there are not many significant effects, and (2) when 
all effect estimates have the same variance.  It turns out that all contrasts computed from 
a 2k design (and hence all effect estimates) have the same variance even if the individual 
observations have different variances.  This statement can be easily demonstrated. 

Suppose that we have conducted a 2k design and have responses  and let the 

variance of each observation be   respectively.  Now each effect estimate is 
a linear combination of the observations, say 
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where the contrast constants ci  are all either –1 or +1.  Therefore, the variance of an 
effect estimate is  
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because c .  Therefore, all contrasts have the same variance.  If each observation yi
2 1= i in 

the above equations is the total of n replicates at each design point, the result still holds. 

 

S6-4. The Variance of the Predicted Response 

Suppose that we have conducted an experiment using a 2k factorial design.  We have fit a 
regression model to the resulting data and are going to use the model to predict the 
response at locations of interest in side the design space − ≤ ≤ + =1 1 1 2x ii , , , , k .  What 
is the variance of the predicted response at the point of interest, say ′ =x [ , , , ]x x xk1 2 ? 

Problem 6-32 asks the reader to answer this question, and while the answer is given in the 
Instructors Resource CD, we also give the answer here because it is useful information.  
Assume that the design is balanced and every treatment combination is replicated n times.  
Since the design is orthogonal, it is easy to find the variance of the predicted response. 

We consider the case where the experimenters have fit a “main effects only” model, say 
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where N is the total number of runs in the design. The variance of the predicted response 
is  
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In the above development we have used the fact that the design is orthogonal, so there are 
no nonzero covariance terms when the variance operator is applied 

The Design-Expert software program plots contours of the standard deviation of the 
predicted response; that is the square root of the above expression.  If the design has 
already been conducted and analyzed, the program replaces  with the error mean 
square, so that the plotted quantity becomes 
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If the design has been constructed but the experiment has not been performed, then the 
software plots (on the design evaluation menu) the quantity 
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which can be thought of as a standardized standard deviation of prediction. To illustrate, 
consider a 22 with n = 3 replicates, the first example in Section 6-2.  The plot of the 
standardized standard deviation of the predicted response is shown below. 
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The contours of constant standardized standard deviation of predicted response should be 
exactly circular, and they should be a maximum within the design region at the point 

.  The maximum value is  x x1 1= ± = ± and 2 1
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This is also shown on the graph at the corners of the square. 

Plots of the standardized standard deviation of the predicted response can be useful in 
comparing designs.  For example, suppose the experimenter in the above situation is 
considering adding a fourth replicate to the design.  The maximum standardized 
prediction standard deviation in the region now becomes  
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The plot of the standardized prediction standard deviation is shown below. 
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 Notice that adding another replicate has reduced the maximum prediction variance from 
(0.5)2 = 0.25 to (0.433)2 = 0.1875.  Comparing the two plots shown above reveals that the 
standardized prediction standard deviation is uniformly lower throughout the design 
region when an additional replicate is run.   

Sometimes we like to compare designs in terms of scaled prediction variance, defined 
as  

NV y[ ( )]x
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This allows us to evaluate designs that have different numbers of runs.  Since adding 
replicates (or runs) to a design will generally always make the prediction variance get 
smaller, the scaled prediction variance allows us to examine the prediction variance on a 
per-observation basis.  Note that for a 2k factorial and the “main effects only” model we 
have been considering, the scaled prediction variance is  
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where  is the distance of the design point where prediction is required from the center 
of the design space (x = 0).  Notice that the 2

ρ2

k design achieves this scaled prediction 
variance regardless of the number of replicates.  The maximum value that the scaled 
prediction variance can have over the design region is  

Max NV y k[ ( )] ( )x
σ 2 1= +  

It can be shown that no other design over this region can achieve a smaller maximum 
scaled prediction variance, so the 2k design is in some sense an optimal design. We will 
discuss optimal designs more in Chapter 11. 

 

S6-5. Using Residuals to Identify Dispersion Effects 
We illustrated in Example 6-4 (Section 6-5 on unreplicated designs) that plotting the 
residuals from the regression model versus each of the design factors was a useful way to 
check for the possibility of dispersion effects. These are factors that influence the 
variability of the response, but which have little effect on the mean.  A method for 
computing a measure of the dispersion effect for each design factor and interaction that 
can be evaluated on a normal probability plot was also given.  However, we noted that 
these residual analyses are fairly sensitive to correct specification of the location model.  
That is, if we leave important factors out of the regression model that describes the mean 
response, then the residual plots may be unreliable. 

To illustrate, reconsider Example 6-4, and suppose that we leave out one of the important 
factors, C = Resin flow.  If we use this incorrect model, then the plots of the residuals 
versus the design factors look rather different than they did with the original, correct 
model.  In particular, the plot of residuals versus factor D = Closing time is shown below. 
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This plot indicates that factor D has a potential dispersion effect.  The normal probability 
plot of the dispersion statistic in Figure 6-28 clearly reveals that factor B is the only 
factor that has an effect on dispersion. Therefore, if you are going to use model residuals 
to search for dispersion effects, it is really important to select the right model for the 
location effects. 
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S6-6. Center Points versus Replication of Factorial Points 
In some design problems an experimenter may have a choice of replicating the corner or 
“cube” points in a 2k factorial, or placing replicate runs at the design center.  For 
example, suppose our choice is between a 22 with n = 2 replicates at each corner of the 
square, or a single replicate of the 22 with nc = 4 center points. 

We can compare these designs in terms of prediction variance.  Suppose that we plan to 
fit the first-order or “main effects only” model 
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If we use the replicated design the scaled prediction variance is (see Section 6-4 above): 

NV y xi
i

[ ( )]

( )

x
σ

ρ

2
2

1

2

2

1

1

= +
F
HG

I
KJ

= +
=
∑  



Now consider the prediction variance when the design with center points is used.  We 
have  
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Therefore, the scaled prediction variance for the design with center points is  
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Clearly, replicating the corners in this example outperforms the strategy of replicating 
center points, at least in terms of scaled prediction variance.  At the corners of the square, 
the scaled prediction variance for the replicated factorial is  
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while for the factorial design with center points it is  
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However, prediction variance might not tell the complete story.  If we only replicate the 
corners of the square, we have no way to judge the lack of fit of the model.  If the design 
has center points, we can check for the presence of pure quadratic (second-order) terms, 
so the design with center points is likely to be preferred if the experimenter is at all 
uncertain about the order of the model he or she should be using. 

 

 

 



S6-7.  Testing for “Pure Quadratic” Curvature using a t-Test 
In Section 6-6 of the textbook we discuss the addition of center points to a 2k factorial 
design.  This is a very useful idea as it allows an estimate of “pure error” to be obtained 
even thought the factorial design points are not replicated and it permits the experimenter 
to obtain an assessment of model adequacy with respect to certain second-order terms.  
Specifically, we present an F-test for the hypotheses 
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An equivalent t-statistic can also be employed to test these hypotheses.  Some computer 
software programs report the t-test instead of (or in addition to) the F-test.  It is not 
difficult to develop the t-test and to show that it is equivalent to the F-test. 

Suppose that the appropriate model for the response is a complete quadratic polynomial 
and that the experimenter has conducted an unreplicated full 2k factorial design with nF 
design points plus nC center points.  Let and Fy Cy  represent the averages of the 
responses at the factorial and center points, respectively.  Also let 2σ̂  be the estimate of 
the variance obtained using the center points.  It is easy to show that  
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Therefore,  

 11 22( )F C kE y y kβ β β− = + + +  

and so we see that the difference in averages Fy yC−  is an unbiased estimator of the sum 
of the pure quadratic model parameters.  Now the variance of Fy yC−  is  

 2 1 1( )F C
F C

V y y
n n

σ
⎛ ⎞

− = +⎜ ⎟
⎝ ⎠

 

Consequently, a test of the above hypotheses can be conducted using the statistic 
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which under the null hypothesis follows a t distribution with nC – 1 degrees of freedom.  
We would reject the null hypothesis (that is, no pure quadratic curvature) if 0 / 2,| |

Cnt tα 1−> . 

This t-test is equivalent to the F-test given in the book.  To see this, square the t-statistic 
above: 



 

2
2
0

2

2

2

( )
1 1ˆ

( )
ˆ( )

F C

F C

F C F C

F C

y yt

n n

n n y y
n n

σ

σ

−
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
−

=
+

 

This ratio is computationally identical to the F-test presented in the textbook.  
Furthermore, we know that the square of a t random variable with (say) v degrees of 
freedom is an F random variable with 1 numerator and v denominator degrees of 
freedom, so the t-test for “pure quadratic” effects is indeed equivalent to the F-test. 
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