
Chapter 8.  Supplemental Text Material 
 

S8-1. Yates’s Method for the Analysis of Fractional Factorials 
Computer programs are almost always used for the analysis of fractional factorial. 
However, we may use Yates's algorithm for the analysis of a 2 k-1 fractional factorial 
design by initially considering the data as having been obtained from a full factorial in k - 
1 variables.  The treatment combinations for this full factorial are listed in standard order, 
and then an additional letter (or letters) is added in parentheses to these treatment 
combinations to produce the actual treatment combinations run.  Yates's algorithm then 
proceeds as usual.  The actual effects estimated are identified by multiplying the effects 
associated with the treatment combinations in the full 2k-1 design by the defining relation 
of the 2k-1 fractional factorial. 

The procedure is demonstrated in Table 1 below using the data from Example 8-1.  This 
is a 24-1 fractional.  The data are arranged as a full 23 design in the factors A, B, and C. 
Then the letter d is added in parentheses to yield the actual treatment combinations that 
were performed.  The effect estimated by, say, the second row in this table is A + BCD 
since A and BCD are aliases. 
 
 
 

Table 1. Yates's Algorithm for the 2  Fractional Factorial in Example 8-1 4 1
IV
−

Treatment 
Combination 

Response (1) (2) (3) Effect Effect 
Estimate 
2 3× ( ) / N
 

(1) 45 145 255 566 - - 
a(d) 100 110 311 76 A+BCD 19.00 
b(d) 45 135 75 6 B+ACD 1.5 
ab 65 176 1 -4 AB+CD -1.00 
c(d) 75 55 -35 56 C+ABD 14.00 
ac 60 20 41 -74 AC+BD -18.50 
bc 80 -15 -15 76 BC+AD 19.00 
abc(d) 96 16 16 66 ABC+D 16.50 
 
 
 
S8-2  Alias Structures in Fractional Factorials and Other Designs 
 
In this chapter we show how to find the alias relationships in a 2k-p fractional factorial 
design by use of the complete defining relation.  This method works well in simple 
designs, such as the regular fractions we use most frequently, but it does not work as well 
in more complex settings, such as some of the irregular fractions and partial fold-over 
designs.  Furthermore, there are some fractional factorials that do not have defining 
relations, such as Plackett-Burman designs, so the defining relation method will not work 
for these types of designs at all. 



Fortunately, there is a general method available that works satisfactorily in many 
situations.  The method uses the polynomial or regression model representation of the 
model, say

y X= +1 1β ε  

where y is an n × 1 vector of the responses, X1 is an n × p1 matrix containing the design 
matrix expanded to the form of the model that the experimenter is fitting, β1 is an p1 × 1 
vector of the model parameters, and ε is an n × 1 vector of errors.  The least squares 
estimate of β1 is 

( )β1 1 1
1

1= ′ ′−X X X y  

Suppose that the true model is 

y X X= + +1 1 2 2β β ε  

where X2 is an n × p2 matrix containing additional variables that are not in the fitted 
model and β2 is a  p2× 1 vector of the parameters associated with these variables.  It can 
be easily shown that  
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where  is called the alias matrix.  The elements of this matrix 
operating on β

A X X X X= ′ ′−( )1 1
1

1 2

2 identify the alias relationships for the parameters in the vector β1. 

We illustrate the application of this procedure with a familiar example.  Suppose that we 
have conducted a 23-1 design with defining relation I = ABC or I = x1x2x3.  The model that 
the experimenter plans to fit is the main-effects-only model 

y x x x= + + + +β β β β ε0 1 1 2 2 3 3  

In the notation defined above,  
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Suppose that the true model contains all the two-factor interactions, so that  

y x x x x x x x x x= + + + + + + +β β β β β β β ε0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3  

and 

β
β
β
β

2

12

13

23

2

1 1 1
1 1 1
1 1 1

1 1 1

=
L

N
MMM

O

Q
PPP

=

− −
− −
− −

L

N

MMMM

O

Q

PPPP
,   and  X  



Now 

( )′ = ′ =

L

N

MMMM

O

Q

PPPP
−X X I X X1 1

1
4 1 2

1
4

0 0 0
0 0 4
0
4

4
0

0
0

  and   

Therefore 

E

E

( ) ( )β β β

β
β
β
β

β
β
β
β

β
β
β

β
β β
β β
β β

1 1 1 1
1

1 2 2

0

1

2

3

0

1

2

3

12

13

23

0

1 23

2 13

3 12

1
4

0 0 0
0 0 4
0
4

4
0

0
0

= + ′ ′

L

N

MMMMM

O

Q

PPPPP
=

L

N

MMMMM

O

Q

PPPPP
+

L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP

=
+
+
+

L

N

MMMM

O

Q

PPPP

−X X X X

 

The interpretation of this, of course, is that each of the main effects is aliased with one of 
the two-factor interactions, which we know to be the case for this design. While this is a 
very simple example, the method is very general and can be applied to much more 
complex designs.  

 
 
S8-3.  More About Fold-Over and Partial Fold-Over of Fractional Factorials 
 
In the textbook, we illustrate how a fractional factorial design can be augmented with 
additional runs to separate effects that are aliased.  A fold-over is another design that is 
the same size as the original fraction.  So if the original experiment has 16 runs, the fold-
over will require another 16 runs.  
 
Sometimes it is possible to augment a 2k-p fractional factorial with fewer than an 
additional 2k-p runs.  This technique is generally referred to as a partial fold over of the 
original design. 
 
For example, consider the 25-2 design shown in Table 2.  The alias structure for this 
design is shown below the table. 
 
 
 
 
 



Table 2.  A 25-2 Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

2 1 Block 1 1 -1 -1 -1 -1 
6 2 Block 1 1 -1 1 -1 1 
3 3 Block 1 -1 1 -1 -1 1 
1 4 Block 1 -1 -1 -1 1 1 
8 5 Block 1 1 1 1 1 1 
5 6 Block 1 -1 -1 1 1 -1 
4 7 Block 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 

 
       
      [A] = A + BD + CE 
      [B] = B + AD + CDE 
      [C] = C + AE + BDE 
      [D] = D + AB + BCE 
      [E] = E + AC + BCD 
      [BC] = BC + DE + ABE + ACD 
      [BE] = BE + CD + ABC + ADE 
 
 
Now suppose that after running the eight trials in Table 2, the largest effects are the main 
effects A, B, and D, and the BC + DE interaction.  The experimenter believes that all 
other effects are negligible.  Now this is a situation where fold-over of the original design 
is not an attractive alternative.  Recall that when a resolution III design is folded over by 
reversing all the signs in the test matrix, the combined design is resolution IV.  
Consequently, the BC and DE interactions will still be aliased in the combined design.  
One could alternatively consider reversing signs in individual columns, but these 
approaches will essentially require that another eight runs be performed. 

The experimenter wants to fit the model 

y x x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 4 4 23 2 3 45 4 5  

where x A x B x C x D x E1 2 3 4 5= = = = =, , , ,  and .  Recall that a partial fold-over is a 
design containing fewer than eight runs that can be used to augment the original design 
and will allow the experimenter to fit this model.  One way to select the runs for the 
partial fold-over is to select points from the remaining unused portion of the 25 such that 
the variances of the model coefficients in the above regression equation are minimized.  
This augmentation strategy is based on the idea of a D-optimal design, discussed in 
Chapter 11. 

Design-Expert can utilize this strategy to find a partial fold-over.  The design produced 
by the computer program is shown in Table 3.  This design completely dealiases the BC 
and DE interactions. 

 

 



Table 3.  The Partially-Folded Fractional Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

2 1 Block 1 1 -1 -1 -1 -1 
6 2 Block 1 1 -1 1 -1 1 
3 3 Block 1 -1 1 -1 -1 1 
1 4 Block 1 -1 -1 -1 1 1 
8 5 Block 1 1 1 1 1 1 
5 6 Block 1 -1 -1 1 1 -1 
4 7 Block 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 
9 9 Block 2 -1 -1 -1 -1 1 

10 10 Block 2 1 1 1 1 -1 
11 11 Block 2 -1 -1 1 -1 -1 
12 12 Block 2 1 1 -1 1 1 

 

Notice that the D-optimal partial fold-over design requires four additional trials. 
Furthermore, these trials are arranged in a second block that is orthogonal to the first 
block of eight trials.    

This strategy is very useful in 16-run resolution IV designs, situations in which a full 
fold-over would require another 16 trials.  Often a partial fold-over with four or eight 
runs can be used as an alternative.  In many cases, a partial fold with only four runs over 
can be constricted using the D-optimal approach. 

As a second example, consider the 26-2 resolution IV design shown in Table 4.  The alias 
structure for the design is shown below the table. 

Table 4.  A 26-2 Resolution IV Design 
Std 
ord 

Run 
ord 

Block Factor 
A:A 

Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

Factor 
F:F 

10 1 Block 1 1 -1 -1 1 1 1 
11 2 Block 1 -1 1 -1 1 1 -1 

2 3 Block 1 1 -1 -1 -1 1 -1 
12 4 Block 1 1 1 -1 1 -1 -1 
16 5 Block 1 1 1 1 1 1 1 
15 6 Block 1 -1 1 1 1 -1 1 

8 7 Block 1 1 1 1 -1 1 -1 
7 8 Block 1 -1 1 1 -1 -1 -1 
5 9 Block 1 -1 -1 1 -1 1 1 
1 10 Block 1 -1 -1 -1 -1 -1 -1 
6 11 Block 1 1 -1 1 -1 -1 1 
4 12 Block 1 1 1 -1 -1 -1 1 

14 13 Block 1 1 -1 1 1 -1 -1 
13 14 Block 1 -1 -1 1 1 1 -1 

9 15 Block 1 -1 -1 -1 1 -1 1 
3 16 Block 1 -1 1 -1 -1 1 1 

 



 
 
      [A] = A + BCE + DEF 
      [B] = B + ACE + CDF 
      [C] = C + ABE + BDF 
      [D] = D + AEF + BCF 
      [E] = E + ABC + ADF 
      [F] = F + ADE + BCD 
      [AB] = AB + CE 
      [AC] = AC + BE 
      [AD] = AD + EF 
      [AE] = AE + BC + DF 
      [AF] = AF + DE 
      [BD] = BD + CF 
      [BF] = BF + CD 
      [ABD] = ABD + ACF + BEF + CDE 
      [ABF] = ABF + ACD + BDE + CEF 
 
Suppose that the main effects of factors A, B, C, and E are large, along with the AB + CE 
interaction chain.  A full fold-over of this design would involve reversing the signs in 
columns B, C, D, E, and F.  This would, of course, require another 16 trials.  A standard 
partial fold using the method described in the textbook would require 8 additional runs.  
The D-optimal partial fold-over approach requires only four additional runs.  The 
augmented design, obtained from Design-Expert, is shown in Table 5.  These four runs 
form a second block that is orthogonal to the first block of 16 runs, and allows the 
interactions of interest in the original alias chain to be separately estimated. 

Remember that partial fold over designs are irregular fractions.  They are not orthogonal 
and as a result, the effect estimates are correlated.  This correlation between effect 
estimates causes inflation in the standard errors of the effects; that is, the effects are not 
estimated as precisely as they would have been in an orthogonal design.  However, this 
disadvantage may be offset by the decrease in the number of runs that the partial fold 
over requires. 

 

 

 

 

 

 

 

 

 

 



 

Table 5.  The Partial Fold-Over 
Std Run Block Factor 

A:A 
Factor 
B:B 

Factor 
C:C 

Factor 
D:D 

Factor 
E:E 

Factor 
F:F 

12 1 Block 1 1 1 -1 1 -1 -1 
15 2 Block 1 -1 1 1 1 -1 1 

2 3 Block 1 1 -1 -1 -1 1 -1 
9 4 Block 1 -1 -1 -1 1 -1 1 
5 5 Block 1 -1 -1 1 -1 1 1 
8 6 Block 1 1 1 1 -1 1 -1 

11 7 Block 1 -1 1 -1 1 1 -1 
14 8 Block 1 1 -1 1 1 -1 -1 
13 9 Block 1 -1 -1 1 1 1 -1 

4 10 Block 1 1 1 -1 -1 -1 1 
10 11 Block 1 1 -1 -1 1 1 1 

6 12 Block 1 1 -1 1 -1 -1 1 
7 13 Block 1 -1 1 1 -1 -1 -1 

16 14 Block 1 1 1 1 1 1 1 
3 15 Block 1 -1 1 -1 -1 1 1 
1 16 Block 1 -1 -1 -1 -1 -1 -1 

17 17 Block 2 1 -1 1 -1 -1 -1 
18 18 Block 2 -1 1 -1 -1 -1 -1 
19 19 Block 2 -1 -1 1 1 1 1 
20 20 Block 2 1 1 -1 1 1 1 

 


	A+BCD
	B+ACD
	AB+CD
	C+ABD
	AC+BD
	BC+AD
	ABC+D

