
Chapter 10.  Supplemental Text Material 
 

S10-1. The Covariance Matrix of the Regression Coefficients 

In Section 10-3 of the textbook, we show that the least squares estimator of β in the linear 
regression model y X= +β ε  

( )β = ′ ′−X X X y1  

is an unbiased estimator.  We also give the result that the covariance matrix of  is 
 (see Equation 10-18).  This last result is relatively straightforward to show.  
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The quantity is just a matrix of constants and y is a vector of random 
variables.  Now remember that the variance of the product of a scalar constant and a 
scalar random variable is equal to the square of the constant times the variance of the 
random variable. The matrix equivalent of this is  
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Now the variance of y is , where I is an n × n identity matrix.  Therefore, this last 
equation becomes 
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We have used the result from matrix algebra that the transpose of a product of matrices is 
just the produce of the transposes in reverse order, and since ( ′X X is symmetric its 
transpose is also symmetric. 

 

S10-2.  Regression Models and Designed Experiments 
In Examples 10-2 through 10-5 we illustrate several uses of regression methods in fitting 
models to data from designed experiments. Consider Example 10-2, which presents the 
regression model for main effects from a 23 factorial design with three center runs.  Since 
the  matrix is symmetric because the design is orthogonal, all covariance terms 
between the regression coefficients are zero. Furthermore, the variance of the regression 
coefficients is  
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In Example 10-3, we reconsider this same problem but assume that one of the original 12 
observations is missing.  It turns out that the estimates of the regression coefficients does 
not change very much when the remaining 11 observations are used to fit the first-order 
model but the ( matrix reveals that the missing observation has had a moderate 
effect on the variances and covariances of the model coefficients.  The variances of the 
regression coefficients are now larger, and there are some moderately large covariances 
between the estimated model coefficients.  Example 10-4, which investigated the impact 
of inaccurate design factor levels, exhibits similar results.  Generally, as soon as we 
depart from an orthogonal design, either intentionally or by accident (as in these two 
examples), the variances of the regression coefficients will increase and potentially there 
could be rather large covariances between certain regression coefficients.  In both of the 
examples in the textbook, the covariances are not terribly large and would not likely 
result in any problems in interpretation of the experimental results.  
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S10-3.  Adjusted R2

In several places in the textbook, we have remarked that the adjusted R2 statistic is 
preferable to the ordinary R2, because it is not a monotonically non-decreasing function 
of the number of variables in the model. 

From Equation (10-27) note that  
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Now the mean square in the denominator of the ratio is constant, but MSE will change as 
variables are added or removed from the model.  In general, the adjusted R2 will increase 
when a variable is added to a regression model only if the error mean square decreases.  
The error mean square will only decrease if the added variable decreases the residual sum 
of squares by an amount that will offset the loss of one degree of freedom for error.  Thus 
the added variable must reduce the residual sum of squares by an amount that is at least 
equal to the residual mean square in the immediately previous model; otherwise, the new 
model will have an adjusted R2 value that is larger than the adjusted R2 statistic for the 
old model. 

 

S10-4.  Stepwise and Other Variable-Selection Methods in Regression 
In the textbook treatment of regression, we concentrated on fitting the full regression 
model.  Actually, in moist applications of regression to data from designed experiments 
the experimenter will have a very good idea about the form of the model he or she wishes 



to fit, either from an ANOVA or from examining a normal probability plot of effect 
estimates.   

There are, however, other situations where regression is applied to unplanned studies, 
where the data may be observational data collected routinely on some process.  The data 
may also be archival, obtained from some historian or library.  These applications of 
regression frequently involve a moderately-large or large set of candidate regressors, 
and the objective of the analysts here is to fit a regression model to the “best subset” of 
these candidates. This can be a complex problem, as these unplanned data sets frequently 
have outliers, strong correlations between subsets of the variables, and other complicating 
features. 

There are several techniques that have been developed for selecting the best subset 
regression model.  Generally, these methods are either stepwise-type variable selection 
methods or all possible regressions.  Stepwise-type methods build a regression model by 
either adding or removing a variable to the basic model at each step.  The forward 
selection version of the procedure begins with a model containing none of the candidate 
variables and sequentially inserts variables into the model one-at-a-time until a final 
equation is produced.  In backward elimination, the procedure begins with all variables in 
the equation, and then variables are removed one-at-a-time to produce a final equation.  
Stepwise regression usually consists of a combination of forward and backward stepping.  
There are many variations of the basic procedures. 

In all possible regressions with K candidate variables, the analyst examines all 2K 
possible regression equations to identify the ones with potential to be a useful model. 
Obviously, as K becomes even moderately large, the number of possible regression 
models quickly becomes formidably large.  Efficient algorithms have been developed that 
implicitly rather than explicitly examine all of these equations.  For more discussion of 
variable selection methods, see textbooks on regression such as Montgomery and Peck 
(1992) or Myers (1990). 

 

S10-5.  The Variance of the Predicted Response 
In section 10-5.2 we present Equation (10-40) for the variance of the predicted response 
at a point of interest .  The variance is  ′ =x0 01 02 0[ , , ,x x x k ]
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where the predicted response at the point x0 is found from Equation (10-39): 

( )y x x0 0= ′β  

It is easy to derive the variance expression: 
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Design-Expert calculates and displays the confidence interval on the mean of the 
response at the point x0 using Equation (10-41) from the textbook.  This is displayed on 
the point prediction option on the optimization menu.  The program also uses Equation 
(10-40) in the contour plots of prediction standard error. 

 

S10-6.  Variance of Prediction Error 
Section 10-6 of the textbook gives an equation for a prediction interval on a future 
observation at the point .  This prediction interval makes use of the 
variance of prediction error. Now the point prediction of the future observation y

′ =x0 01 02 0[ , , ,x x x k ]
0 at x0 is  

( )y x x0 0= ′β  

and the prediction error is 

e y yp = −0 0( )x  

The variance of the prediction error is  
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because the future observation is independent of the point prediction.  Therefore,  
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The square root of this quantity, with an estimate of , appears in Equation 
(10-42) defining the prediction interval. 

σ σ2 2= = MSE

 

S10-7.  Leverage in a Regression Model 
In Section 10-7.2 we give a formal definition of the leverage associated with each 
observation in a design (or more generally a regression data set).  Essentially, the 
leverage for the ith observation is just the ith diagonal element of the “hat” matrix 

H X X X X= ′ ′−( ) 1  

or 

hii i i= ′ ′ −x X X x( ) 1  

where it is understood that is the ith row of the matrix.   ′xi X

There are two ways to interpret the leverage values.  First, the leverage hii is a measure of 
distance reflecting how far each design point is from the center of the design space.  For 
example, in a 2k factorial all of the cube corners are the same distance k from the 



design center in coded units.  Therefore, if all points are replicated n times, they will all 
have identical leverage.   

Leverage can also be thought of as the maximum potential influence each design point 
exerts on the model.  In a near-saturated design many or all design points will have the 
maximum leverage.  The maximum leverage that any point can have is hii = 1.  However, 
if points are replicated n times, the maximum leverage is 1/n.  High leverage situations 
are not desirable, because if leverage is unity that point fits the model exactly. Clearly, 
then, the design and the associated model would be vulnerable to outliers or other 
unusual observations at that design point.  The leverage at a design point can always be 
reduced by replication of that point. 


