
Chapter 12  Supplemental Text Material 

 

S12-1.  The Taguchi Approach to Robust Parameter Design 
Throughout this book, we have emphasized the importance of using designed 
experiments for product and process improvement.  Today, many engineers and scientists 
are exposed to the principles of statistically designed experiments as part of their formal 
technical education.  However, during the 1960-1980 time period, the principles of 
experimental design (and statistical methods, in general) were not as widely used as they 
are today 

In the early 1980s, Genichi Taguchi, a Japanese engineer, introduced his approach to 
using experimental design for 
 
1. Designing products or processes so that they are robust to environmental conditions. 
 
2. Designing/developing products so that they are robust to component variation. 
 
3. Minimizing variation around a target value. 
 
Note that these are essentially the same objectives we discussed in Section 11-7.1. 
  
Taguchi has certainly defined meaningful engineering problems and the philosophy that 
recommends is sound.  However, as noted in the textbook, he advocated some novel 
methods of statistical data analysis and some approaches to the design of experiments 
that the process of peer review revealed were unnecessarily complicated, inefficient, and 
sometimes ineffective.  In this section, we will briefly overview Taguchi's philosophy 
regarding quality engineering and experimental design.  We will present some examples 
of his approach to parameter design, and we will use these examples to highlight the 
problems with his technical methods.  As we saw in Chapter 12 of the textbook, it is 
possible to combine his sound engineering concepts with more efficient and effective 
experimental design and analysis based on response surface methods. 

Taguchi advocates a philosophy of quality engineering that is broadly applicable.  He 
considers three stages in product (or process) development: system design, parameter 
design, and tolerance design.  In system design, the engineer uses scientific and 
engineering principles to determine the basic system configuration.  For example, if we 
wish to measure an unknown resistance, we may use our knowledge of electrical circuits 
to determine that the basic system should be configured as a Wheatstone bridge.  If we 
are designing a process to assemble printed circuit boards, we will determine the need for 
specific types of axial insertion machines, surface-mount placement machines, flow 
solder machines, and so forth. 

In the parameter design stage, the specific values for the system parameters are 
determined.  This would involve choosing the nominal resistor and power supply values 
for the Wheatstone bridge, the number and type of component placement machines for 
the printed circuit board assembly process, and so forth.  Usually, the objective is to 



specify these nominal parameter values such that the variability transmitted from 
uncontrollable or noise variables is minimized. 

Tolerance design is used to determine the best tolerances for the parameters.  For 
example, in the Wheatstone bridge, tolerance design methods would reveal which 
components in the design were most sensitive and where the tolerances should be set.  If 
a component does not have much effect on the performance of the circuit, it can be 
specified with a wide tolerance. 

Taguchi recommends that statistical experimental design methods be employed to assist 
in this process, particularly during parameter design and tolerance design.  We will focus 
on parameter design.  Experimental design methods can be used to find a best product or 
process design, where by "best" we mean a product or process that is robust or insensitive 
to uncontrollable factors that will influence the product or process once it is in routine 
operation. 

The notion of robust design is not new.  Engineers have always tried to design products 
so that they will work well under uncontrollable conditions.  For example, commercial 
transport aircraft fly about as well in a thunderstorm as they do in clear air.  Taguchi 
deserves recognition for realizing that experimental design can be used as a formal part of 
the engineering design process to help accomplish this objective. 

A key component of Taguchi's philosophy is the reduction of variability.  Generally, 
each product or process performance characteristic will have a target or nominal value.  
The objective is to reduce the variability around this target value.  Taguchi models the 
departures that may occur from this target value with a loss function.  The loss refers to 
the cost that is incurred by society when the consumer uses a product whose quality 
characteristics differ from the nominal.  The concept of societal loss is a departure from 
traditional thinking.  Taguchi imposes a quadratic loss function of the form 

     L(y) = k(y- T)2                       

shown in Figure 1 below.  Clearly this type of function will penalize even small 
departures of y from the target T. Again, this is a departure from traditional thinking, 
which usually attaches penalties only to cases where y is outside of the upper and lower 
specifications (say y > USL or y < LSL in Figure 1.  However, the Taguchi philosophy 
regarding reduction of variability and the emphasis on minimizing costs is entirely 
consistent with the continuous improvement philosophy of Deming and Juran. 

In summary, Taguchi's philosophy involves three central ideas: 

1. Products and processes should be designed so that they are robust to external sources 
of variability. 

2. Experimental design methods are an engineering tool to help accomplish this 
objective. 

3.   Operation on-target is more important than conformance to specifications. 



 
Figure 1.  Taguchi’s Quadratic Loss Function 

 

These are sound concepts, and their value should be readily apparent.  Furthermore, as 
we have seen in the textbook, experimental design methods can play a major role in 
translating these ideas into practice. 

We now turn to a discussion of the specific methods that Professor Taguchi recommends 
for applying his concepts in practice.  As we will see, his approach to experimental 
design and data analysis can be improved. 

 

S12-2.  Taguchi’s Technical Methods 

An Example 
We will use the connector pull-off force example described in the textbook to illustrate 
Taguchi’s technical methods.  For more information about the problem, refer to the text 
and to the original article in Quality Progress in December 1987 (see "The Taguchi 
Approach to Parameter Design," by D. M. Byrne and S. Taguchi, Quality Progress, 
December 1987, pp. 19-26).  Recall that the experiment involves finding a method to 
assemble an elastomeric connector to a nylon tube that would deliver the required pull-
off performance to be suitable for use in an automotive engine application.  The specific 
objective of the experiment is to maximize the pull-off force.  Four controllable and three 
uncontrollable noise factors were identified.  These factors are defined in the textbook, 
and repeated for convenience in Table 1 below.  We want to find the levels of the 
controllable factors that are the least influenced by the noise factors and that provides the 
maximum pull-off force.  Notice that although the noise factors are not controllable 
during routine operations, they can be controlled for the purposes of a test.  Each 
controllable factor is tested at three levels, and each noise factor is tested at two levels. 

Recall from the discussion in the textbook that in the Taguchi parameter design 
methodology, one experimental design is selected for the controllable factors and another 
experimental design is selected for the noise factors.  These designs are shown in Table 2.  
Taguchi refers to these designs as orthogonal arrays, and represents the factor levels 
with integers 1, 2, and 3. In this case the designs selected are just a standard 23 and a 34-2 
fractional factorial.  Taguchi calls these the L8 and L9 orthogonal arrays, respectively. 



 
 
Table 1.  Factors and Levels for the Taguchi Parameter Design Example 
 
Controllable Factors  Levels 
 
A = Interference Low Medium High 
B = Connector wall thickness Thin Medium Thick 
C =  Insertion,depth Shallow Medium Deep 
D = Percent adhesive in Low Medium High 
connector pre-dip 
 
Uncontrollable Factors                     Levels 
E = Conditioning time   24 h 120 h 
F = Conditioning temperature   72°F 150°F 
G = Conditioning relative humidity   25% 75% 
 
 
 
 
Table 2.  Designs for the Controllable and Uncontrollable 
Factors 
(a) L9 Orthogonal Array (b) L8 Orthogonal Array 
for the Controllable for the Uncontrollable 
Factors Factors 
Variable       .               Variable                    . 
Run     A     B    C      D Run      E    F    E X F     G   Ex G         
Fx G   e 
11   1 1 1 1 1 1 1 1 1 1 1 
21 2 2 2 2 1 1 1 2 2 2 2 
31 3 3 3 3 1 2 2 1 1 2 2 
42 1 2 3 4 1 2 2 2 2 1 1 
52 2 3 1 5 2 1 2 1 2 1 2 
62 3 1 2 6 2 1 2 2 1 2 1 
73 1 3 2 7 2 2 1 1 2 2 1 
83 2 1 3 8 2 2 1 2 1 1 2 
93 3 2 1 
 
 
 
The two designs are combined as shown in Table 11-22 in the textbook, repeated for 
convenience as Table 3 below.  Recall that this is called a crossed  or product array 
design, composed of the inner array containing the controllable factors, and the outer 
array containing the noise factors.  Literally, each of the 9 runs from the inner array is 
tested across the 8 runs from the outer array, for a total sample size of 72 runs. The 
observed pull-off force is reported in Table 3. 
 
Data Analysis and Conclusions 
 
The data from this experiment may now be analyzed.  Recall from the discussion in 
Chapter 11 that Taguchi recommends analyzing the mean response for each run in the 



inner array (see Table 3), and he also suggests analyzing variation using an appropriately 
chosen signal-to-noise ratio (SN).  These signal-to-noise ratios are derived from the 
quadratic loss function, and three of them are considered to be "standard" and widely 
applicable.  They are defined as follows: 
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Table 3.       Parameter Design with Both Inner and Outer Arrays 

___________________________________________________________________________________ 
 

                  Outer Array (L8) 
 
   E             1                1           1             2             2           2          2 
   F             1                2           2             1             1           2          2 

 G            2                1           2              1            2            1          2 
 
    Inner Array (L9)  .                 Responses      
.

Run A      B         C      D                    y              SNL

 1 1 1 1 1 15.6 9.5       16.9 19.9 19.6 19.6 20.0 19.1    17.525     24.025 
 2 1 2 2 2 15.0 16.2       19.4 19.2 19.7 19.8 24.2 21.9    19.475     25.522 
 3 1 3 3 3 16.3 16.7       19.1 15.6 22.6 18.2 23.3 20.4    19.025     25.335 
 4 2 1 2 3 18.3 17.4       18.9 18.6 21.0 18.9 23.2 24.7    20.125     25.904 
 5 2 2 3 1 19.7 18.6       19.4 25.1 25.6 21.4 27.5 25.3    22.825     26.908 
 6 2 3 1 2 16.2 16.3       20.0 19.8 14.7 19.6 22.5 24.7    19.225     25.326 
 7 3 1 3 2 16.4 19.1       18.4 23.6 16.8 18.6 24.3 21.6    19.8         25.711 
 8 3 2 t 3 14.2 15.6       15.1 16.8 17.8 19.6 23.2 24.2    18.338     24.852 
 9 3 3 2 1 16.1 19.9      19.3 17.3 23.1 22.7 22.6 28.6    21.200     26.152 
____________________________________________________________________________________________________ 
 
 
3.   Smaller the better: 
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Notice that these SN ratios are expressed on a decibel scale.  We would use SNT if the 
objective is to reduce variability around a specific target, SNL if the system is optimized 
when the response is as large as possible, and SNS if the system is optimized when the 
response is as small as possible.  Factor levels that maximize the appropriate SN ratio are 
optimal. 



In this problem, we would use SNL because the objective is to maximize the pull-off 
force.  The last two columns of Table 3 contain y  and SNL values for each of the nine 
inner-array runs.  Taguchi-oriented practitioners often use the analysis of variance to 
determine the factors that influence y  and the factors that influence the signal-to-noise 
ratio.  They also employ graphs of the "marginal means" of each factor, such as the ones 
shown in Figures 2 and 3.  The usual approach is to examine the graphs and "pick the 
winner." In this case, factors A and C have larger effects than do B and D. In terms of 
maximizing SNL we would select AMedium, CDeep, BMedium, and DLow.   In terms of 
maximizing the average pull-off force y , we would choose AMedium, CMedium, BMedium and 
DLow.  Notice that there is almost no difference between CMedium and CDeep.  The 
implication is that this choice of levels will maximize the mean pull-off force and reduce 
variability in the pull-off force. 

 
Figure 2.  The Effects of Controllable Factors on Each Response 

 

 
 

Figure 3.  The Effects of Controllable Factors on the Signal to Noise Ratio 
 
 
 
Taguchi advocates claim that the use of the SN ratio generally eliminates the need for 
examining specific interactions between the controllable and noise factors, although 
sometimes looking at these interactions improves process understanding.  The authors of 



this study found that the AG and DE interactions were large.  Analysis of these 
interactions, shown in Figure 4, suggests that AMedium is best. (It gives the highest pull-off 
force and a slope close to zero, indicating that if we choose AMedium the effect of relative 
humidity is minimized.) The analysis also suggests that DLow gives the highest pull-off 
force regardless of the conditioning time. 

When cost and other factors were taken into account, the experimenters in this example 
finally decided to use AMedium, BThin, CMedium, and Dlow.  (BThin was much less expensive 
than BMedium, and CMedium was felt to give slightly less variability than CDeep.) Since this 
combination was not a run in the original nine inner array trials, five additional tests were 
made at this set of conditions as a confirmation experiment.  For this confirmation 
experiment, the levels used on the noise variables were ELow, FLow, and GLow.  The 
authors report that good results were obtained from the confirmation test. 
 

 
 

Figure 4.  The AG and DE Interactions 
 
Critique of Taguchi’s Experimental Strategy and Designs 
 
The advocates of Taguchi's approach to parameter design utilize the orthogonal array 
designs, two of which (the L8 and the L9) were presented in the foregoing example.  There 
are other orthogonal arrays: the L4, L12, L16, L18, and L27.  These designs were not 
developed by Taguchi; for example, the L8 is a 2  fractional factorial, the L7 4
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12 is a Plackett-Burman design, the L16 is a fractional 
factorial, and so on.  Box, Bisgaard, and Fung (1988) trace the origin of these designs.  
As we know from Chapters 8 and 9 of the textbook, some of these designs have very 
complex alias structures.  In particular, the L
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12 and all of the designs that use three-level 
factors will involve partial aliasing of two-factor interactions with main effects.  If any 
two-factor interactions are large, this may lead to a situation in which the experimenter 
does not get the correct answer. 



Taguchi argues that we do not need to consider two-factor interactions explicitly.  He 
claims that it is possible to eliminate these interactions either by correctly specifying the 
response and design factors or by using a sliding setting approach to choose factor 
levels.  As an example of the latter approach, consider the two factors pressure and 
temperature.  Varying these factors independently will probably produce an interaction.  
However, if temperature levels are chosen contingent on the pressure levels, then the 
interaction effect can be minimized.  In practice, these two approaches are usually 
difficult to implement unless we have an unusually high level of process knowledge.  The 
lack of provision for adequately dealing with potential interactions between the 
controllable process factors is a major weakness of the Taguchi approach to parameter 
design. 

Instead of designing the experiment to investigate potential interactions, Taguchi prefers 
to use three-level factors to estimate curvature.  For example, in the inner and outer array 
design used by Byrne and Taguchi, all four controllable factors were run at three levels.  
Let x1, x2, x3 and x4 represent the controllable factors and let z1, z2, and z3 represent the 
three noise factors.  Recall that the noise factors were run at two levels in a complete 
factorial design.  The design they used allows us to fit the following model: 
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Notice that we can fit the linear and quadratic effects of the controllable factors but not 
their two-factor interactions (which are aliased with the main effects).  We can also fit the 
linear effects of the noise factors and all the two-factor interactions involving the noise 
factors.  Finally, we can fit the two-factor interactions involving the controllable factors 
and the noise factors.  It may be unwise to ignore potential interactions in the controllable 
factors.   

This is a rather odd strategy, since interaction is a form of curvature.  A much safer 
strategy is to identify potential effects and interactions that may be important and then 
consider curvature only in the important variables if there is evidence that the curvature is 
important.  This will usually lead to fewer experiments, simpler interpretation of the data, 
and better overall process understanding. 

Another criticism of the Taguchi approach to parameter design is that the crossed array 
structure usually leads to a very large experiment.  For example, in the foregoing 
application, the authors used 72 tests to investigate only seven factors, and they still could 
not estimate any of the two-factor interactions among the four controllable factors.   

There are several alternative experimental designs that would be superior to the inner and 
outer method used in this example.  Suppose that we run all seven factors at two levels in 
the combined array design approach discussed on the textbook.  Consider the 

fractional factorial design.  The alias relationships for this design are shown in the 
top half of Table 4.  Notice that this design requires only 32 runs (as compared to 72).  In 
the bottom half of Table 4, two different possible schemes for assigning process 
controllable variables and noise variables to the letters A through G are given.  The first 
assignment scheme allows all the interactions between controllable factors and noise 
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factors to be estimated, and it allows main effect estimates to be made that are clear of 
two-factor interactions.  The second assignment scheme allows all the controllable factor 
main effects and their two-factor interactions to be estimated; it allows all noise factor 
main effects to be estimated clear of two-factor interactions; and it aliases only three 
interactions between controllable factors and noise factors with a two-factor interaction 
between two noise factors.  Both of these arrangements present much cleaner alias 
relationships than are obtained from the inner and outer array parameter design, which 
also required over twice as many runs. 

In general, the crossed array approach is often unnecessary.  A better strategy is to use the 
combined array design discussed in the textbook.  This approach will almost always 
lead to a dramatic reduction in the size of the experiment, and at the same time, it will 
produce information that is more likely to improve process understanding.  For more 
discussion of this approach, see Myers and Montgomery (1995) and Example 11-6 in the 
textbook.  We can also use a combined array design that allows the experimenter to 
directly model the noise factors as a complete quadratic and to fit all interactions between 
the controllable factors and the noise factors, as demonstrated in the textbook in Example 
11-7. 
 

Table 4.  An Alternative Parameter Design 
 

A one-quarter fraction of 7 factors in 32 runs.  Resolution IV. 
I = ABCDF = ABDEG = CEFG. 

 
Aliases: 
 A  AF = BCD  CG = EF 
 B  AG = BDE  DE = ABG 
 C  = EFG BC = ADF  DF = ABC 
 D  BD = ACF = AEG  DG = ABE 
 E  =  CFG BE = ADG   ACE = AFG 
 F  =  CEG  BF = ACD   ACG = AEF 
 G =  CEF BG = ADE   BCE = BFG 
 AB = CDF = DEG CD = ABF   BCG = BEF 
 AC = BDF CE = FG   CDE = DFG 
 AD = BCF = BEG CF = ABD  =  EG   CDG = DEF 

AF = BDG 
 
Factor Assignment Schemes: 
1. Controllable factors are assigned to the letters C, E, F, and G. Noise factors are assigned to the letters A, B, and D. All 

interactions between controllable factors and noise factors can be estimated. and all controllable factor main effects can be 
estimated clear of two-factor interactions. 

2. Controllable factors are assigned to the letters A, B, C, and D. Noise factors are assigned to the letters E, F. and G. All 
controllable factor main effects and two-factor interactions can be estimated; only the CE, CF, and CG interactions are aliased 
with interactions of the noise factors. 

 
 
Another possible issue with the Taguchi inner and outer array design relates to the order 
in which the runs are performed.  Now we know that for experimental validity, the runs 
in a designed experiment should be conducted in random order. However, in many 
crossed array experiments, it is possible that the run order wasn’t randomized.  In some 
cases it would be more convenient to fix each row in the inner array (that is, set the levels 
of the controllable factors) and run all outer-array trials. In other cases, it might be more 
convenient to fix the each column in the outer array and the run each on the inner array 
trials at that combination of noise factors.  Exactly which strategy is pursued probably 
depends on which group of factors is easiest to change, the controllable factors or the 



noise factors.  If the tests are run in either manner described above, then a split-plot 
structure has been introduced into the experiment.  If this is not accounted for in the 
analysis, then the results and conclusions can be misleading.  There is no evidence that 
Taguchi advocates used split-plot analysis methods.  Furthermore, since Taguchi 
frequently downplayed the importance of randomization, it is highly likely that many 
actual inner and outer array experiments were inadvertently conducted as split-plots, and 
perhaps incorrectly analyzed.  We introduce the split-plot design in Chapter in Chapter 
13.  A good reference on split-plots in robust design problems is Box and Jones (1992). 

A final aspect of Taguchi's parameter design is the use of linear graphs to assign factors 
to the columns of the orthogonal array.  A set of linear graphs for the L8 design is shown 
in Figure 5.  In these graphs, each number represents a column in the design.  A line 
segment on the graph corresponds to an interaction between the nodes it connects.  To 
assign variables to columns in an orthogonal array, assign the variables to nodes first; 
then when the nodes are used up, assign the variables to the line segments.  When you 
assign variables to the nodes, strike out any line segments that correspond to interactions 
that might be important.  The linear graphs in Figure 5 imply that column 3 in the L8 
design contains the interaction between columns 1 and 2, column 5 contains the 
interaction between columns 1 and 4, and so forth.  If we had four factors, we would 
assign them to columns 1, 2, 4, and 7. This would ensure that each main effect is clear of 
two-factor interactions.  What is not clear is the two-factor interaction aliasing.  If the 
main effects are in columns 1, 2, 4, and 7, then column 3 contains the 1-2 and the 4-7 
interaction, column 5 contains the 1-4 and the 2-7 interaction, and column 6 contains the 
1-7 and the 2-4 interaction.  This is clearly the case because four variables in eight runs is 
a resolution IV plan with all pairs of two-factor interactions aliased.  In order to 
understand fully the two-factor interaction aliasing, Taguchi would refer the experiment 
designer to a supplementary interaction table. 

Taguchi (1986) gives a collection of linear graphs for each of his recommended 
orthogonal array designs.  These linear graphs seem -to have been developed 
heuristically.  Unfortunately, their use can lead to inefficient designs.  For examples, see 
his car engine experiment [Taguchi and Wu (1980)] and his cutting tool experiment 
[Taguchi (1986)].  Both of these are 16-run designs that he sets up as resolution III 
designs in which main effects are aliased with two-factor interactions.  Conventional 
methods for constructing these designs would have resulted in resolution IV plans in 
which the main effects are clear of the two-factor interactions.  For the experimenter who 
simply wants to generate a good design, the linear graph approach may not produce the 
best result.  A better approach is to use a simple table that presents the design and its full 
alias structure such as in Appendix Table XII.  These tables are easy to construct and are 
routinely displayed by several widely available and inexpensive computer programs. 
 



 
Figure 5.  Linear Graphs for the L8 Design 

 
 
 
 
Critique of Taguchi’s Data Analysis Methods  
Several of Taguchi's data analysis methods are questionable.  For example, he 
recommends some variations of the analysis of variance that are known to produce 
spurious results, and he also proposes some unique methods for the analysis of attribute 
and life testing data.  For a discussion and critique of these methods, refer to Box, 
Bisgaard, and Fung (1988), Myers and Montgomery (1995), and the references contained 
therein.  In this section we focus on three aspects of his recommendations concerning 
data analysis:  the use of "marginal means" plots to optimize factor settings, the use of 
signal-to-noise ratios, and some of his uses of the analysis of variance. 

Consider the use of "marginal means" plots and the associated "pick the winner" 
optimization that was demonstrated previously in the pull-off force problem.  To keep the 
situation simple, suppose that we have two factors A and B, each at three levels, as shown 
in Table 5.  The "marginal means" plots are shown in Figure 6.  From looking at these 
graphs, we would select A3 and B1, as the optimum combination, assuming that we wish 
to maximize y. However, this is the wrong answer.  Direct inspection of Table 5 or the 
AB interaction plot in Figure 7 shows that the combination of A3 and B2 produces the 
maximum value of y. In general, playing "pick the winner" with marginal averages can 
never be guaranteed to produce the optimum.  The Taguchi advocates recommend that a 
confirmation experiment be run, although this offers no guarantees either.  We might be 
confirming a response that differs dramatically from the optimum.  The best way to find a 
set of optimum conditions is with the use of response surface methods, as discussed and 
illustrated in Chapter 11 of the textbook. 

Taguchi's signal-to-noise ratios are his recommended performance measures in a wide 
variety of situations.  By maximizing the appropriate SN ratio, he claims that variability is 
minimized. 

 
 



 
 
 

Table 5.   Data for the "Marginal Means" Plots in Figure 6 
                                                                                 Factor A 

 1 2 3 B Averages 
1 10 10 13 11.00 
2 8 10 14 9.67 
3 6 9 10 8.33 

 
 
Factor B 

A Averages 8.00 9.67 11.67  
 
 

 
 

Figure 6.   Marginal Means Plots for the Data in Table 5 
 
 

 
Figure 7.   The AB Interaction Plot for the Data in Table 5. 

 
 

Consider first the signal to noise ratio for the target is best case 
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This ratio would be used if we wish to minimize variability around a fixed target value.  
It has been suggested by Taguchi that it is preferable to work with SNT   instead of the 
standard deviation because in many cases the process mean and standard deviation are 
related. (As µ gets larger, σ gets larger, for example.) In such cases, he argues that we 
cannot directly minimize the standard deviation and then bring the mean on target.  



Taguchi claims he found empirically that the use of the SNT ratio coupled with a two-
stage optimization procedure would lead to a combination of factor levels where the 
standard deviation is minimized and the mean is on target.  The optimization procedure 
consists of (1) finding the set of controllable factors that affect SNT, called the control 
factors, and setting them to levels that maximize SNT and then (2) finding the set of 
factors that have significant effects on the mean but do not influence the SNT ratio, called 
the signal factors, and using these factors to bring the mean on target. 

Given that this partitioning of factors is possible, SNT is an example of a performance 
measure independent of adjustment (PERMIA) [see Leon et al. (1987)].  The signal 
factors would be the adjustment factors.  The motivation behind the signal-to-noise 
ratio is to uncouple location and dispersion effects.  It can be shown that the use of SNT  is 
equivalent to an analysis of the standard deviation of the logarithm of the original data.  
Thus, using SNT  implies that a log transformation will always uncouple location and 
dispersion effects.  There is no assurance that this will happen.  A much safer approach is 
to investigate what type of transformation is appropriate. 

Note that we can write the SNT   ratio as 
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If the mean is fixed at a target value (estimated by y ), then maximizing the SNT ratio is 
equivalent to minimizing log (S2).  Using log (S2) would require fewer calculations, is 
more intuitively appealing, and would provide a clearer understanding of the factor 
relationships that influence process variability - in other words, it would provide better 
process understanding.  Furthermore, if we minimize log (S2) directly, we eliminate the 
risk of obtaining wrong answers from the maximization of SNT   if some of the 
manipulated factors drive the mean y  upward instead of driving S2 downward.  In 
general, if the response variable can be expressed in terms of the model 

y x x xd a d= µ ε( , ) ( )  

where xd is the subset of factors that drive the dispersion effects and xa is the subset of 
adjustment factors that do not affect variability, then maximizing SNT will be equivalent 
to minimizing the standard deviation.  Considering the other potential problems 
surrounding SNT , it is likely to be safer to work directly with the standard deviation (or 
its logarithm) as a response variable, as suggested in the textbook.  For more discussion, 
refer to Myers and Montgomery (1995). 

The ratios SNL and SNS are even more troublesome.  These quantities may be completely 
ineffective in identifying dispersion effects, although they may serve to identify location 
effects, that is, factors that drive the mean.  The reason for this is relatively easy to see.  
Consider the SNS (smaller-the-better) ratio: 
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The ratio is motivated by the assumption of a quadratic loss function with y nonnegative.  
The loss function for such a case would be 
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where C is a constant.  Now 
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and 

SNS = 10 log C - 10 log L 

so maximizing SNs will minimize L. However, it is easy to show that 
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Therefore, the use of SNS as a response variable confounds location and dispersion 
effects. 

The confounding of location and dispersion effects was observed in the analysis of the 
SNL ratio in the pull-off force example.  In Figures 3 and 3 notice that the plots of y  and 
SNL versus each factor have approximately the same shape, implying that both responses 
measure location.  Furthermore, since the SNS and SNL ratios involve y2 and 1/y2, they 
will be very sensitive to outliers or values near zero, and they are not invariant to linear 
transformation of the original response.  We strongly recommend that these signal-to-
noise ratios not be used.   



A better approach for isolating location and dispersion effects is to develop separate 
response surface models for y  and log(S2).   If no replication is available to estimate 
variability at each run in the design, methods for analyzing residuals can be used.  
Another very effective approach is based on the use of the response model, as 
demonstrated in the textbook and in Myers and Montgomery (1995).  Recall that this 
allows both a response surface for the variance and a response surface for the mean to be 
obtained for a single model containing both the controllable design factors and the noise 
variables.   Then standard response surface methods can be used to optimize the mean 
and variance. 

Finally, we turn to some of the applications of the analysis of variance recommended by 
Taguchi.  As an example for discussion, consider the experiment reported by Quinlan 
(1985) at a symposium on Taguchi methods sponsored by the American Supplier 
Institute.  The experiment concerned the quality improvement of speedometer cables.  
Specifically, the objective was to reduce the shrinkage in the plastic casing material. 
(Excessive shrinkage causes the cables to be noisy.) The experiment used an L16 
orthogonal array (the 2  design).  The shrinkage values for four samples taken from 
3000-foot lengths of the product manufactured at each set of test conditions were 
measured and the responses 
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y  and SNSheila computed. 

Quinlan, following the Taguchi approach to data analysis, used SNS  as the response 
variable in an analysis of variance.  The error mean square was formed by pooling the 
mean squares associated with the seven effects that had the smallest absolute magnitude.  
This resulted in all eight remaining factors having significant effects (in order of 
magnitude: E, G, K, A, C, F, D, H).  The author did note that E and G were the most 
important. 

Pooling of mean squares as in this example is a procedure that has long been known to 
produce considerable bias in the ANOVA test results, To illustrate the problem, consider 
the 15 NID(0, 1) random numbers shown in column 1 of Table 6.  The square of each of 
these numbers, shown in column 2 of the table, is a single-degree-of-freedom mean 
square corresponding to the observed random number.  The seven smallest random 
numbers are marked with an asterisk in column 1 of Table 6.  The corresponding mean 
squares are pooled to form a mean square for error with seven degrees of freedom.  This 
quantity is 

MSE = =
05088

7
0 0727. .  

Finally, column 3 of Table 6 presents the F ratio formed by dividing each of the eight 
remaining mean squares by MSE.  Now F0.05,1,7 = 5.59, and this implies that five of the 
eight effects would be judged significant at the 0.05 level.  Recall that since the original 
data came from a normal distribution with mean zero, none of the effects is different from 
zero. 

Analysis methods such as this virtually guarantee erroneous conclusions.  The normal 
probability plotting of effects avoids this invalid pooling of mean squares and provides a 
simple, easy to interpret method of analysis.  Box (1988) provides an alternate analysis of  



Table 6.  Pooling of Mean Squares 

NID(0,1) Random 
Numbers 

Mean Squares with One Degree 
of Freedom 

F0

-08607 0.7408 10.19 

-0.8820 0.7779 10.70 

0.3608* 0.1302  

0.0227* 0.0005  

0.1903* 0.0362  

-0.3071* 0.0943  

1.2075 1.4581 20.06 

0.5641 0.3182 4038 

-0.3936* 0.1549  

-0.6940 0.4816 6.63 

-0.3028* 0.0917  

0.5832 0.3401 4.68 

0.0324* 0.0010  

1.0202 1.0408 14.32 

-0.6347 0.4028 5.54 

 

the Quinlan data that correctly reveals E and G to be important along with other 
interesting results not apparent in the original analysis. 

It is important to note that the Taguchi analysis identified negligible factors as significant.  
This can have profound impact on our use of experimental design to enhance process 
knowledge.  Experimental design methods should make gaining process knowledge 
easier, not harder. 

 

Some Final Remarks   

In this section we have directed some major criticisms toward the specific methods of 
experimental design and data analysis used in the Taguchi approach to parameter design.  
Remember that these comments have focused on technical issues, and that the broad 
philosophy recommended by Taguchi is inherently sound. 

On the other hand, while the “Taguchi controversy” was in full bloom, many companies 
reported success with the use of Taguchi's parameter design methods.  If the methods are 
flawed, why do they produce successful results?  Taguchi advocates often refute criticism 
with the remark that "they work." We must remember that the "best guess" and "one-



factor-at-a-time" methods will also work-and occasionally they produce good results.  
This is no reason to claim that they are good methods.  Most of the successful 
applications of Taguchi's technical methods have been in industries where there was no 
history of good experimental design practice.  Designers and developers were using the 
best guess and one-factor-at-a-time methods (or other unstructured approaches), and 
since the Taguchi approach is based on the factorial design concept, it often produced 
better results than the methods it replaced.  In other words, the factorial design is so 
powerful that, even when it is used inefficiently, it will often work well. 

As pointed out earlier, the Taguchi approach to parameter design often leads to large, 
comprehensive experiments, often having 70 or more runs.  Many of the successful 
applications of this approach were in industries characterized by a high-volume, low-cost 
manufacturing environment.  In such situations, large designs may not be a real problem, 
if it is really no more difficult to make 72 runs than to make 16 or 32 runs.  On the other 
hand, in industries characterized by low-volume and/or high-cost manufacturing (such as 
the aerospace industry, chemical and process industries, electronics and semiconductor 
manufacturing, and so forth), these methodological inefficiencies can be significant. 

A final point concerns the learning process.  If the Taguchi approach to parameter design 
works and yields good results, we may still not know what has caused the result because 
of the aliasing of critical interactions.  In other words, we may have solved a problem (a 
short-term success), but we may not have gained process knowledge, which could be 
invaluable in future problems. 

In summary, we should support Taguchi's philosophy of quality engineering.  However, 
we must rely on simpler, more efficient methods that are easier to learn and apply to 
carry this philosophy into practice.  The response surface modeling framework that we 
present in the textbook is an ideal approach to process optimization and as we have 
demonstrated, it is fully adaptable to the robust parameter design problem. 
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