
Chapter 13.  Supplemental Text Material 
 
 

S13-1.  Expected Mean Squares for the Random Model 
We consider the two-factor random effects balanced ANOVA model 
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given as Equation (13-15) in the textbook.  We list the expected mean squares for this 
model in Equation (13-17), but do not formally develop them.  It is relatively easy to 
develop the expected mean squares from direct application of the expectation operator. 

For example, consider finding 
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where SSA is the sum of squares for the row factor.  Recall that the model components 
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are normally and independently distributed with means zero and 

variances respectively. The sum of squares and its expectation are 
defined as 
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Furthermore, we can show that 
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so the second term in the expected value of SSA becomes 
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We can now collect the components of the expected value of the sum of squares for 
factor A and find the expected mean square as follows: 
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This agrees with the first result in Equation (15-17). 

 

S13-2.  Expected Mean Squares for the Mixed Model 

As noted in Section 13-3 of the textbook, there are several version of the mixed model, 
and the expected mean squares depend on which model assumptions are used.  In this 
section, we assume that the restricted model is of interest.  The next section considers 
the unrestricted model. 

Recall that in the restricted model there are assumptions made regarding the fixed factor, 
A; namely,  
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We will find the expected mean square for the random factor, B.  Now 
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Using the restrictions on the model parameters, we can easily show that 

y an anj j. . . .= + +µ β ε  

and  
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Since 

y abn an... . ...= + +µ β ε  

we can easily show that 
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Therefore the expected value of the mean square for the random effect is 
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The other expected mean squares can be derived similarly.  

 

S13-3.  Restricted versus Unrestricted Mixed Models 

We now consider the unrestricted model 
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for which the assumptions are 

α αγ αγ. [( ) ]= =0 2  and V ij  

and all random effects are uncorrelated random variables.  Notice that there is no 
assumption concerning the interaction effects summed over the levels of the fixed factor 
as is customarily made for the restricted model. Recall that the restricted model is 
actually a more general model than the unrestricted model, but some modern computer 
programs give the user a choice of models (and some computer programs only use the 
unrestricted model), so there is increasing interest in both versions of the mixed model. 

We will derive the expected value of the mean square for the random factor, B, in 
Equation (13-26), as it is different from the corresponding expected mean square in the 
restricted model case.  As we will see, the assumptions regarding the interaction effects 
are instrumental in the difference in the two expected mean squares.  



The expected mean square for the random factor, B, is defined as 
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and, as in the cases above 

E SS
an

E y
abn

E yB j
j

b

( ) (. . ...= −
=
∑1 12

1

2 )

j

 

First consider 
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because α . = 0 .  Notice, however, that the interaction term in this expression is not zero 
as it would be in the case of the restricted model. Now the expected value of the first part 
of the expression for E(SSB) is  
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Now we can show that 

y abn bn an n
abn an n

... . . .. ...

. .. ...

( )
( )

= + + + +
= + + +

µ α γ αγ ε
µ γ αγ ε

 

Therefore 

1 12 2 2 2 2 2

2 2 2 2
abn

E y
abn

abn b an abn abn

abn an n

( ) ( ) ( )... = + + +

= + + +

µ σ σ

µ σ σ σ

γ αγ

γ αγ

2σ
 

We may now assemble the components of the expected value of the sum of squares for 
factor B and find the expected value of MSB as follows: 
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This last expression is in agreement with the result given in Equation (13-26).  

Deriving expected mean squares by the direct application of the expectation operator (the 
“brute force” method) is tedious, and the rules given in the text are a great labor-saving 
convenience.  There are other rules and techniques for deriving expected mean squares, 
including algorithms that will work for unbalanced designs.  See Milliken and Johnson 
(1984) for a good discussion of some of these procedures. 

 

S13-4.  Random and Mixed Models with Unequal Sample Sizes 

Generally, ANOVA models become more complicated to analyze when the designs is 
unbalanced; that is, when some of the cells contain different numbers of observations. In 
Chapter 15, we briefly discuss this problem in the two-factor fixed-effects design. The 
unbalanced case of random and mixed models is not discussed there, but we offer some 
very brief advice in this section. 

An unbalanced random or mixed model will not usually have exact F-tests as they did in 
the balanced case.  Furthermore, the Satterthwaite approximate or synthetic F-test does 
not apply to unbalanced designs.  The simplest approach to the analysis is based on the 
method of maximum likelihood.  This approach to variance component estimation was 
discussed in Section 13-7.3, and the SAS procedure employed there can be used for 
unbalanced designs.  The disadvantage of this approach is that all the inference on 
variance components is based on the maximum likelihood large sample theory, which is 
only an approximation because designed experiments typically do not have a large 
number of runs.  The book by Searle (1987) is a good reference on this general topic. 

 

S13-5.  Some Background Concerning the Modified Large Sample Method 

In Section 12-7.2 we discuss the modified large same method for determining a 
confidence interval on variance components that can be expressed as a linear combination 
of mean squares.  The large sample theory essentially states that  
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has a normal distribution with mean zero and variance unity as  
approaches infinity,  where 
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Operationally, we would replace θ i by MSi in actually computing the confidence interval.  
This is the same basis used for construction of the confidence intervals by SAS PROC 
MIXED that we presented in section 13-7.3 (refer to the discussion of tables 13-17 and 
13-18 in the textbook).   

These large-sample intervals work well when the number of degrees of freedom are large, 
but when the fi are small they may be unreliable.  However, the performance may be 
improved by applying suitable modifications to the procedure.  Welch (1956) suggested a 
modification to the large-sample method that resulted in some improvement, but Graybill 
and Wang (1980) proposed a technique that makes the confidence interval exact for 
certain special cases.  It turns out that it is also a very good approximate procedure for the 
cases where it is not an exact confidence interval.  Their result is given in the textbook as 
Equation (13-42). 

 

 

S13-6.  A Confidence Interval on a Ratio of Variance Components using the 
Modified Large Sample Method 
 As observed in the textbook, the modified large sample method can be used to determine 
confidence intervals on ratios of variance components.  Such confidence intervals are 
often of interest in practice.  For example, consider the measurement systems capability 
study described in Example 12-2 in the textbook.  In this experiment, the total variability 
from the gauge is the sum of three variance components , and the 

variability of the product used in the experiment is .  One way to describe the 
capability of the measurement system is to present the variability of the gauge as a 
percent of the product variability.  Therefore, an experimenter would be interested in the 
ratio of variance components 
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Suppose that  is a ratio of variance components of interest and that we can 
estimate the variances in the ratio by the ratio of two linear combinations of mean 
squares, say 
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and G H  are as previously defined.  For more details, see the book by 
Burdick and Graybill (1992). 
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