Review - Exam 1
Ch 1 - 6

Variables

1) Numeric
 a) discrete
 b) continuous

2) Categorical
 a) ranked
 b) unranked

3) Relative Frequency
 how to compute it
Tables / Graphical Displays

1) Dot Plot
2) Stem and Leaf Plot
3) Box Plots
4) Bar Graph
5) Pie Chart
6) Frequency Distribution
7) Histogram
- Descriptive Statistics vs Inferential Statistics

- Distinction between sample population & population
\[\frac{i(m-n)m}{i} = \frac{m}{u} \]

\[\frac{u}{z(xz)^2} = \frac{xz}{2} \]

\[(x-x)^2 \]

\[z(xz)^2 \]

\[xz \]

Calculations
Averages - Centers of Data

Mean: $\bar{x} = \frac{\sum x}{n}$

Median: $\frac{1}{2} (n+1)^{th}$ ranked observation

Mode: most frequent observed value

- Which is sensitive to the outliers?
Sample Standard Deviation

\[S = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \]

or

\[S = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}} \]

Interpretation
Interpretation

Value of s indicates how "spread out" the data is

1) $s = 0$ → No variation in the data; values all the same

2) s "small" → the data values are not widely dispersed

3) s "large" → the data values are widely dispersed
S small

0 20 40

S large

0 20 40

S = 0
Probability: Relative Frequency Definition

Def: Suppose an experiment consists of n trials, and k of these trials result in event E. Then

\[\hat{P}(E) = \frac{k}{n} = \frac{\# \text{successful repetitions}}{\text{total \# repetitions}} \]

Note: This is called the empirical probability of an event or the relative frequency of the event.
Probability - Equally Likely Outcomes

Def: Suppose an experiment can result in one of \(m \) equally likely outcomes. Suppose that \(r \) of these outcomes result in event \(A \) occurring. Then the theoretical probability of event \(A \) is

\[
P(A) = \frac{r}{m}
\]

\[
= \frac{\text{# outcomes in event } A}{\text{total # possible outcomes}}
\]

Note: For each outcome in S.S.

\[
P(\text{outcome}) = \frac{1}{\text{total # possible outcomes}}
\]
A discrete probability distribution is a list (or description) of the values the random variable can have, along with the associated probabilities.

What is Sample space? SS
Rules

The probability of an event E is always between 0 and 1, inclusive:

$$0 \leq P(E) \leq 1$$

$P(E) = 0 \quad \rightarrow \quad \text{event } E \text{ cannot occur}$

$P(E) = 1 \quad \rightarrow \quad \text{event } E \text{ must always occur}$
2) The probability of event A is equal to the sum of the probabilities of the outcomes in event A

$$P(A) = \sum_{\text{all outcomes in } A} P(\text{outcome})$$

Complementary Event

Def: Suppose A is an event. The complement of event A, denoted "not A", is the event "A does not occur".

Rule of Complementary Events

$$P(\text{not } A) = 1 - P(A)$$
The compound event
\[E_1 \cap E_2 = E_1 \text{ and } E_2 \]
ocurs if and only if both event \(E_1 \) occurs and event \(E_2 \) occurs.

The compound event
\[E_1 \cup E_2 = E_1 \text{ or } E_2 \text{ or both} \]
ocurs if \(E_1 \) happens or if \(E_2 \) happens or if both events happen.
Two events are mut. excl. if the occurrence of one event precludes the occurrence of the other event.

If event E_1 and event E_2 are mut. excl. then

\[P(E_1 \text{ and } E_2) = 0 \]

\[P(E_1 \mid E_2) = 0 \]

\[P(E_2 \mid E_1) = 0 \]
Gen. Add. Law ("or")

\[P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2) \]

Spec. Add. Law (Mut. excl. events)

\[P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) \]
Conditional Prob.
\[P(E_2 \mid E_1) \]

Gen. Mult. Law ("Amp")
\[P(E_1 \text{ and } E_2) = P(E_1) P(E_2 \mid E_1) = P(E_2) P(E_1 \mid E_2) \]

Spec. Mult. Law (Ind. Events)
\[P(E_1 \text{ and } E_2) = P(E_1) P(E_2) \]