Testing Hypotheses about proportions

R-codes:

1. Binomial Test:

 \[n=215, \ B=39, \ p_0 =0.15 \]

 when \(n \) is large, then use

 \[\text{prop.test (B_obs, n, p_0)} \]

 1-sample proportions test with continuity correction

 data: 39 out of 215, null probability 0.15
 X-squared = 1.425, df = 1, p-value = 0.2326
 alternative hypothesis: true p is not equal to 0.15
 95 percent confidence interval:
 0.1335937 0.2408799
 sample estimates:
 \(p \)
 0.1813953

If \(n \) is small, then

\[\text{binom.test(39, 215, 0.15)} \]

 Exact binomial test

 data: 39 and 215
 number of successes = 39, number of trials = 215, p-value = 0.2135
 alternative hypothesis: true probability of success is not equal to 0.15
 95 percent confidence interval:
 0.1322842 0.2395223
 sample estimates:
 probability of success
 0.1813953
2. **Two populations:**

 - \(n_1 \) and \(n_2 \) - the sample sizes
 - \(B_1 \) and \(B_2 \) – the number of successes

 Example #2:

 \[b = c(9,4) \]
 \[n = c(12,13) \]

 prop.test(b, n)

 2-sample test for equality of proportions with continuity correction

 - data: \(b \) out of \(n \)
 - \(X \)-squared = 3.2793, df = 1, p-value = 0.07016
 - alternative hypothesis: two.sided
 - 95 percent confidence interval:
 - 0.01151032 0.87310506
 - sample estimates:
 - prop 1 prop 2
 - 0.7500000 0.3076923

 or one can use Chi-squared test:

 \[m = \text{matrix}(c(9,4,3,9), 2) \]

 chisq.test(m)

 Pearson's Chi-squared test with Yates' continuity correction

 - data: \(m \)
 - \(X \)-squared = 3.2793, df = 1, p-value = 0.07016

3. **Empirical CDF:**

 Example #3:

 \[X = c(1.2, 0.5, 3.2, 2.5, 4) \]
 \[n = \text{length}(X) \]

 plot(sort(X), (1:n)/n, type="s", ylim=c(0,1))

 ecdf(X)
Empirical CDF
Call: ecdf(X)
\(x[1:5] = 0.5, 1.2, 2.5, 3.2, 4 \)
Example #4:

Data:
y=c(2.5, 7.5, 13.5, 19)
b=c(0, 5, 10, 18, 20)
freq.:
```r
v = c(10, 12, 13, 14)
m = rep(y, v)
hist(m, breaks=b)
```
```r
x = seq(0, 5, 0.01)
y = seq(0, 5, 0.01)

plot(x, floor(y), type="l")

or

plot(x, punif(x, 0, 5), type="l")
```
n=20
z=1:n
v=seq(0, 20, 0.01)
plot(z, pbinom(z, 20, 0.30), type='step')
lines(v, pnorm(v, 6, 4.2^(0.5)),type="l")

Here np= 6, np(1-p)=4.2. (both are almost 5)